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Why look at electrons?

 Electrons make a small fraction of CRs 
( < 1%)

 Important measurement for the community 
(acceleration, escape & propagation of  CR’s 
from leptonic sources)

 Electron suffer strong cooling (synchrotron & 
IC) and cannot travel far from sources ⇒ 
nearby sources

 Electrons cannot travel “incognito” (IC & 
synchrotron unavoidable) ⇒ can reveal 
sources

 Possible handle to dark matter (e+ fraction)
S.Navas et al, PDG, 2024
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Electrons from space

 AMS data show complicated lepton spectra:
 e+ data consistent with secondaries + a high energy source term (cutoff @ 749 GeV)
 e− data consistent with 2 power law + source term similar to that of e+

 Interpretation in terms of classical CR source (SNR, PWN, …) + a leptonic 
(e+e−) source (pulsars?) and/or Dark Matter
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Very-High-Energy electrons ( ≥ 1 TeV) with IACTs

 Very low fluxes ⇒ challenging, but important measurement
 Despite large effective areas, IACTs are not made for measuring electron 

spectra (dominant hadronic background) ⇒  Difficult, non-standard analyses 
 H.E.S.S. publications in 2008, 2009
 Preliminary H.E.S.S. High-Energy spectrum 

shown at ICRC 2017 + final analysis at 
ICRC 2023

 MAGIC spectrum shown at ICRC 2023
 Recent PRL publication with final spectrum

Phys. Rev. Lett. 133, 221001, 2024

HESS 2009
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Challenges for IACTs

 Electron induced showers almost indistinguishable from gamma induced ones
 Hadronic background >> electron flux, cannot be subtracted like we do for γ-

ray sources (diffuse emission)
⇒ need to estimate remaining hadronic contamination (and possibly subtract)

 Very low fluxes at high energy
⇒ need very large data sets
⇒ need excellent Data/MC agreement to control the systematics
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HESS 2023 – 2024 Analysis

 6830 HESS-I runs (> 3000 hr) excl. Gal. Plane (|l| > 15°)
 2° circular region, excluding all known γ-ray sources
 Based on Model++ HESS-I (de Naurois et al. 2009)

(log-likelihood fitting of shower images on pre-calculated 
templates)

 Additional cuts to enrich the sample in electrons
 RunWise (Holler et al, 2020) response function

(one MC per run), ~perfect data-MC agreement
 Spectrum determination with forward folding

(proper treatment of biases)
 Many systematics checks performed
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MC Validation

 Extensive checks on γ-ray source PKS 2155-304, in electron-like cuts, shows 
a perfect agreement ⇒  validation of RWS approach
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Selection Variables

 4 Variables used to increase the electron fractions:
 Primary Interaction Depth
 Direction Uncertainty
 Impact Distance
 Telescope Multiplicity Note: Proton MC not fully reliable!
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Electrons in the data sample

 Mean Scale Shower Goodness (MSSG) is the main Model++ discrimination 
variable.

 Electron cuts make electron population appear clearly in MSSG


Model++ HESSI Std γ-like 
cuts Electron cuts
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Hadronic Contamination

 Model the electron peak with an
analytical shape

 Assume a “regular” shape for the
hadronic background

 Fit the data with superposition of
 Electron contribution (fixed shape,

free normalisation)
 Background distribution 
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Hadronic Contamination

 Model the electron peak with an
analytical shape

 Assume a “regular” shape for the
hadronic background

 Fit the data with superposition of
 Electron contribution (fixed shape,

free normalisation)
 Background distribution 

 For a given cut position
 Contamination obtained by ratio of

areas under curves
 Average value ~ 20%
 Depends on assumption for background C= 

+
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Up to which energy?

 Electrons clearly visible up to ~ 3 TeV at least
 Faint electron peak above 3 TeV

 ⇒ not possible to firmly state max. energy of electrons
 Contamination expected to rise with energy (harder proton spectrum)

250 GeV – 1 TeV 1 TeV – 3 TeV ≥ 3 TeV
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Final Spectrum

 Highly significant (> 100 σ) spectral break
 Best fit parameters:

 Γ1 = 3.25 ± 0.02stat ± 0.2syst

 Γ2 = 4.49 ± 0.04stat ± 0.2syst

 Ebreak = (1.17 ± 0.04stat ± 0.1syst) TeV
 Sharpness s = 0.21 ± 0.02stat

 @ 1 TeV:
E3×Φ(E) = (126.1 ± 0.5stat) GeV2 m−2 s−1 sr−1 
(not corrected for contamination)

d N
d E

=Φ0×( EE0
)
−Γ1

×(1+( EEcut
)
1/ s

)
s×(Γ1−Γ2)
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Final Spectrum

 Highly significant (> 100 σ) spectral break
 Best fit parameters:

 Γ1 = 3.25 ± 0.02stat ± 0.2syst

 Γ2 = 4.49 ± 0.04stat ± 0.2syst

 Ebreak = (1.17 ± 0.04stat ± 0.1syst) TeV
 Sharpness s = 0.21 ± 0.02stat

 @ 1 TeV:
E3×Φ(E) = (126.1 ± 0.5stat) GeV2 m−2 s−1 sr−1 
(not corrected for contamination)

Highest energy
point ~ 15 TeV

Above ~ 4TeV 
no proof of e−

strict upper limit

Highly significant 
break at ~ 1 TeV

With reasonable 
contamination, 

match with AMS

Rise above a few 
TeV excluded

d N
d E

=Φ0×( EE0
)
−Γ1

×(1+( EEcut
)
1/ s

)
s×(Γ1−Γ2)
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Spectral Shape – Smooth Transition

 Smoothness parameter s:

 Results:
 Δχ2 = 55.08 ⇒  7.4 σ)
 s = 0.21 ± 0.02stat + 0.10sys – 0.06sys

 Energy resolution ~ 9%

d N
d E

=Φ0×( EE0
)
−Γ1

×(1+( EEcut
)
1/ s

)
s×(Γ1−Γ2)
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Systematic Checks

 Electron flux stable (within systematics) with:
 Zenith Angle (0 to 45°)
 Galactic Latitude ⇒  same feature throughout the Milky Way, no Gal. Plan contamination
 Variation of cut values (impact, ...) ⇒  stability of analysis
 ...
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Lightcurves

 Diffusive propagation
→ no changes over ~ decades

 Flux is stable on various time-
scales (day, month, year) over 
> 10 years
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Implications

 >10 TeV electrons and break impose 
limitations on cooling time 
(~ 100 kyr) and propagation (~ few 
100 pc).

 Rather strong constrain on 
energetics:  e.g. burst of Vela-type 
(300 pc, 11 kyr,  ~7 × 1036 erg/s) is 
limited to E < 2 × 1046 erg

 Fairly sharp break points towards 
handful (or single) nearby source(s)
e.g. Mauro+14, Recchia+19, Drury 11 
    

Max released energy as function 
of source age and distance
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MAGIC Spectrum

 Dataset of ~ 220 hours, Galactic latitude |b|>20°
 No known gamma-ray source in FoV
 Analysis based on an “hadroness” classifier (Random Forest method) in two 

steps, tight cuts approach
 Energy resolution ~ 15%
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MAGIC spectrum @ ICRC 2023
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MAGIC spectrum @ ICRC 2023

 Spectrum compatible with broken 
power-law
 Ebreak ~ 0.9 TeV
 High energy spectrum harder than 

that of HESS
Remaining contamination?
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LHAASO – KM2A measurement

 Very large effective area, wide field of view
 Higher energy domain, complementary with IACTs
 ICRC 2023 results : upper limits only, no conflict with IACTs
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Conclusions

 Unprecedented dataset of ≥ 3000 hours of HESS-I data used in electron 
analysis

 High precision analysis with RunWise© simulations (every run simulated 
individually)

 Highly significant (and relatively sharp break) in electron spectrum at ~ 1 TeV
 Presence of electrons in data set demonstrated up to 3 TeV at least, spectrum 

extending to ~ 20 TeV
 Interpretation of break

 Accumulation of sources of different ages and distances (natural would result in a 
smoother transition)

 Contribution of a few, nearby sources more likely ⇒ possible anisotropies
 (very) low fluxes ⇒ Challenging for space instruments!
 Phys. Rev. Lett. 133, 221001, 2024
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