The coherent magnetic field of the Milky Way halo

P. Tinyakov

Université Libre de Bruxelles (ULB)

in collaboration with A.Korochkin and D.Semikoz 2407.02148 (accepted to ApJ)

Rencontres du Vietnam, 2025

Motivation

Observables & Data

Data preparation

Model components

Results and implications

Conclusions

Motivation

- Magnetic fields play important role in the Galaxy
 - CR tarnsport and energy distribution
 - formation of galactic winds and outflows
 - formation of turbulence
- Galactic MF exist on all scales from pc to kpc
- Coherent MF of the Milky Way is crucial for finding sources of UHECR

Observations of other galaxies reveal large-scale coherent MF:

NGC891, NGC5775

Previous phenomenological models :

Previous models based on varous data sets:

- Pre-NVSS: Han et al. 1997; PT & Tkachev 2002; Beck 2001
- ► *NVSS:* Pshirkov et al 2011 (PT11)
- NVSS+WMAP: Jansson & Farrar 2012 (JF12); Han et al. 2018; Xu & Han 2019; Shaw et al. 2022; Unger & Farrar 2023 (UF23); Xu & Han 2024.

Why do we need a new model?

- new improved data
- shortcomings of previous models
- new structures: Local Bubble and Fan Region

・ロト・西ト・西ト・日・ 白・

Magnetic field tracers

- Fraday rotation: extragalactic sources
 - $ightarrow \sim$ 59 k sources; cover whole sky
 - integrated over the line of sight
- Fraday rotation: pulsars
 - concentrated in the Galactic plane
 - have distance information
- Synchrotron emission of relativistic electrons
 - high resolution all-sky maps (WMAP and Planck)
 - integrated over the line of sight
- Starlight polarization by dust
 - dust is concentrated in the thin disk of \sim 200 pc
- Zeeman splitting
 - no directional inforamtion

Data used in this analysis: extragalactic Fraday rotations & synchrotron polarization maps [both are line-of-sight integrals]

Faraday rotation

Rotation of the polarization plane Δφ of a wave propagating through the ionized gas is proportional to λ²

$$\mathbf{RM} = \frac{\Delta\phi}{\lambda^2} = \frac{e^3}{2\pi m_e^2} \int n_e \mathbf{B}_{||} dl$$
$$= 0.81 \frac{\mathrm{rad}}{\mathrm{m}^2} \int n_e \mathbf{B}_{||} dl \cdot \frac{\mathrm{cm}^3}{\mu \mathrm{G} \mathrm{\,pc}}$$

- depends on the parallel component $\mathbf{B}_{||}$.
- requires density of free electrons n_e
- positive for $\mathbf{B}_{||}$ pointing towards the observer

Faraday rotation data

- We use most recent compilation of ~ 59 k extragalactic RMs available in CIRADA consolidated catalog version v1.2.0 of which the core is the NRAO VLA Sky Survey (NVSS)
- Cover almost uniformly the whole sky with mean density $\sim 1.5/{\rm degree}^2$.
- Galactic pulsars are *not included* in our analysis

 Total synchrotron intensity is proportional to B²,

$$I \propto rac{e^4}{m^2} \mathbf{B}^2 \left(rac{E}{m}
ight)^2$$

- $\blacktriangleright\,$ sensitive to the perpendicular component B_{\perp}
- *insensitive* to the sign of \mathbf{B}_{\perp}
- proportional to the density of *relativistic* electrons
- \blacktriangleright linearly polarized in the direction perpendicular to B_{\perp}

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Synchrotron data

- We use the final 9-year WMAP polarization sky maps at 23 GHz
- Planck and WMAP are very similar (for the study of their systematic differences see Cosmoglobe project [Watts et al. 2023)])
- Stokes parameters:

Data preparation

- Cleaning: iteratively remove 3σ outliers until converged
- ▶ Binning: $10^{\circ} \times 10^{\circ}$ bins each containing ~ 100 RM measures on average

Masking:

- RM: mask the Galactic plane ±10° and some known local anomalies; 26% of the sky masked in total
- Synchrotron: remove a few local anomalies, 11% of the sky masked

Error estimation: Use variations of the data in the constant latitude strip to estimate variation in the bin of size L:

$$\sigma^{2}(L) = 2\sum_{k=3}\operatorname{sinc}^{2}\left(\frac{kL}{2}\right)S_{k}$$

Example: latitude $b = 45^{\circ}$

Main model components

(1) Thick disk

- inspired by observations of other galaxies face-on
- \blacktriangleright consists of spiral arms with adjustable positions, thickness ($\sim 1-2~{\rm kpc})$ and field magnitude

(2) Toroidal halo

- independent North and South components
- inspired by symmetry, and by previous models (PT11)

(3) X-shape field

- necessary to fit synchrotron data (JF12)
- inspired by observations of other galaxies edge-on

Main model components

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

New feature 1: Local Bubble

Local Bubble is a cavity in the dust distribution surrounding Sun, created by recent supernova

- Three main components still do not fit the data well: when normalized to RM they underproduce synchrotron at high latitudes
- Previously this problem was solved by assuming striation
- Instead we add the Local Bubble
- We play on the fact that synchrotron is quadratic in B, while RM are linear

Simple model of the Local Bubble:

New feature 2: Fan Region

This is a bright region around the GP at $\sim 90^{\circ} < I < \sim 180^{\circ}$. Hill'17: > 30% of the Fan Region emission originates from beyond 2 kpc \implies must be a part of a large-scale GMF

Results of the fit: RM

Results of the fit: Stokes Q and U

Global fit:

	χ^2	n.d.f.	$\chi^2/{ m ndf}$
RM	544	283	1.92
Q	385	348	1.11
U	482	348	1.38
total	1411	1037	1.36

Comparison with previous models: UHECR defelctions

Deflections of an UHECR particle of rigidity $R = \frac{E}{Z} = 2 \times 10^{19} \text{ eV}$ in several regular GMF models. Random field is not included

Note: Local Bubble does not contribute much to the deflections, while the Fan Region does contribute very significantly \implies its accurate modeling is crucial

Comparison with previous models: Amaterasu

Backtracking of the Amaterasu particle of energy 244 EeV assuming an iron nuclei.

- Only regular field is taken into account
- Blue: our model + 1σ uncertainty of energy + 1σ uncertainties of fitting parameters
- Green: collection of 8 models of UF23 with their uncertainties + 1σ uncertainty of energy
- Caveat: overlaps with Loop I

・ロト・日本・山田・山田・山下・

Conclusions and outlook

- We have a good idea about the overall magnitude of the coherent GMF
- This however is not sufficient to reliably calculate the UHECR deflections and determine source positions with a reasonable accuracy
- Present analysis may be refined by fitting together the GMF and relativistic electron density, but large uncertinities will remain becaue of degeneracies
- new data involving distance information must be added to lift these degeneracies
 - Galactic pulsar RMs
 - RM + synchrotron measurements at many wavelengths ("magnetic tomography") [Wolleben'19,21]