Testing GR using Large Scale Structure: A Pixelised Approach

Rencontres Du Vietnam 2025

Collaborators: Daniel Thomas, Richard Battye, Peter Taylor, Francesco Pace (Based on 2004.13051, 2103.05051, 2306.17240, **2409.06569)**

Sankarshana Srinivasan Alexander von-Humboldt Fellow, USM, LMU Munich Sankarshana.Sri@physik.uni-muenchen.de

Some Problems with ACDM

- Some major issues that (should) keep cosmologists up at night:
- The unknown nature of the main ingredients of the model, dark matter and dark energy.

Some Problems with ΛCDM

	GW Events		
Strength of gravity	Local Tests	Non-Linear??	Λ CDM Linear
	< 1 pc	Scale	>30 Mpc

Some major issues that (should) keep cosmologists up at night:

- The unknown nature of the main ingredients of the model, dark matter and dark energy.
- Validity of general relativity (GR) assumed over a huge range of scales where it hasn't been tested

Vast model space

Post-Friedmann Formalism: Pixelized Poisson Eqn.

- Post-Friedmann $1/c^2$ expansion of FLRW metric
- Quasi-static limit (weak-field, low velocity regime)

$$k^{2}\tilde{\phi} = 4\pi a^{2}G_{N}\mu(a,k)\tilde{\Delta},$$

$$\tilde{\psi} = \eta(a,k)\tilde{\phi}$$

Post-Friedmann Formalism: Pixelized Poisson Eqn.

- Post-Friedmann $1/c^2$ expansion of FLRW metric
- Quasi-static limit (weak-field, low velocity regime) [Thomas, 2020]

$$k^{2}\tilde{\phi} = 4\pi a^{2}G_{N}\mu(a,k)\tilde{\Delta},$$

$$\tilde{\psi} = \eta(a,k)\tilde{\phi}$$

- $\mu(a,k), \eta(a,k)$ are generic functions of scale and time in modified gravity
- Approach: Independent pixels in redshift (and eventually, scale), explore which bins are best constrained by data

Post-Friedmann Formalism: Pixelized Poisson Eqn.

- Post-Friedmann $1/c^2$ expansion of FLRW metric
- Quasi-static limit (weak-field, low velocity regime)
- $\mu(a,k), \eta(a,k)$ are generic functions of scale and time in modified gravity
- Approach: Independent pixels in redshift (**Thomas (2020)**) (and eventually, scale), explore which bins are best constrained by data

N-body simulations: Measuring P(k) for binned μ

• Redshift bins of equal incremental growth – identical P(k) on linear scales

N-body simulations: Measuring P(k) for binned μ

- Redshift bins of equal incremental growth – identical P(k) on linear scales

Number of bins	Redshift	μ	
1	0-50	1.044	0.956
2	0-7.0	1.100	0.900
	7.0-50	1.080	0.920
4	0-2.1	1.256	0.746
	2.1 - 7.0	1.167	0.837
	7.0-19.2	1.162	0.842
	19.2 - 50.0	1.161	0.843

 Srinivasan et. al. (2021) (2103.05051), where bin-width is varied to keep D(z = 0) constant.

z=0 phenomenology (ratio of matter power spectrum in MG to GR)

z=0 phenomenology (ratio of matter power spectrum in MG to GR)

N-body simulations: Measuring P(k) for binned μ

• So-called **Reaction** [R(k)], ratio of P(k) in MG relative to re-scaled Λ CDM

12

N-body simulations: Validating ReACT for binned μ

• ReACT: Code that implements halo model reaction formalism (see Cataneo et al (2019), Bose et al (2020), Bose et al 2021) to compute R(k)

N-body simulations: Validating ReACT for binned μ

N-body simulations: Computing 3x2pt observables

• From the standard Limber approximation, the 2-D projection can be computed from the matter power spectrum and the modified gravity parameters

$$C_{ij}(\ell) = \int_{z_{\min}}^{z_{\max}} dz \frac{W_i(z)W_j(z)}{H(z)\chi^2(z)} P(k_\ell, z)$$

Where the **clustering kernel** is:

$$W_i^{\rm G}(z) = b_i(k,z) \frac{n_i(z)}{\bar{n}} H(z) = W_{i,\Lambda{\rm CDM}}^{\rm G}(z)$$

N-body simulations: Computing 3x2pt observables

• From the standard Limber approximation, the 2-D projection can be computed from the matter power spectrum and the modified gravity parameters

$$C_{ij}(\ell) = \int_{z_{\min}}^{z_{\max}} dz \frac{W_i(z)W_j(z)}{H(z)\chi^2(z)} P(k_\ell, z)$$

Where the lensing kernel is:

$$W_i^{\rm L}(z) = W_{i,\Lambda{\rm CDM}}^{\rm L} \frac{\mu(z)[1+\eta(z)]}{2} + W_i^{\rm IA}(k,z),$$

N-body simulations: Validating ReACT for binned μ

- Srinivasan et al (2024): Validate ReACT for a relevant part of (μ, D) parameter space

17

Fisher Forecasts

- Pipeline : Compute non-linear P(k) with ReACT v1 and ReACT v2 [modified $c(M, \mu, D)$]
- Limber : $P(k) \Longrightarrow C(\ell)$
- Obvious fiducial point : *A*CDM
- LSST Y-10 like survey, 10 lens bins and 5 source bins
- Nuisance parameters: bin-wise bias b_i , linear alignment amplitude A_{IA} , baryonic feedback parameter T_{AGN} , photo-z errors, shear calibration parameters (29 in total)
- 4 redshift bins for μ and η .

Fisher Forecasts

Key questions are:

• How much can we push into non-linear scales without having to worry about baryonic feedback/other small scale uncertainties?

Fisher Forecasts

Key questions are:

- How much can we push into non-linear scales without having to worry about baryonic feedback/other small scale uncertainties?
- What's the most efficient binning scheme to maximise constraining power? How does this change as a function of MG params and scale-cut?

The Bernardeau-Nimishi-Taruya (BNT) Transform

21

The Bernardeau-Nimishi-Taruya (BNT) Transform

Mitigating Baryonic Feedback

 $k_{\rm cut} = 0.5 h \, {\rm Mpc^{-1}}$

 $k_{\text{cut}} = 0.5 h \text{ Mpc}^{-1}$ (GC, GGL) Corresponding ℓ_{cut} (Shear)

Improvement from NL modelling

Degeneracies

- Key degeneracy is μ - η in same redshift bin:
 - Exact degeneracy in linear theory in lensing. In principle non-linear info breaks this.
 - When lensing dominates the 3x2pt data vector (low z), this degeneracy is more prominent.
 - Non-linear effects reduce this degeneracy, but not as much as hoped (even with concentration).
- Degeneracies with LCDM parameters are smaller than in linear theory.

What next?

- ReACT is slow! Needs emulation. Validation required for multiple bins, scale dependence
- Is COLA a reasonable validation tool in the range of scales we care about for binned $\mu \eta$?
- Other observables from sims, voids/clusters (splashback, counts)?

Summary

- Large scale structure allows precision tests of gravity on nonlinear cosmological scales.
- Model-agnostic approach: bin MG parameters in scale and time!
- BNT allows control over range of scales entering analysis → better constraining power due to better control of uncertainties in the modelling of small scales.
- We achieve factor ~ 20 improvement in the MG parameter constraints relative to the linear only case (see 2409.06569 for more details).