

Office of Science

BERKELEY LAB

The Atacama Cosmology Telescope:

Multi-probe cosmology with unWISE galaxies and CMB lensing

Gerrit S. Farren

gfarren@lbl.gov

Chamberlain Fellow @ Lawrence Berkeley National Laboratory, Berkeley, CA

based on work with Alex Krolewski, Frank Qu, Niall MacCrann, Boris Bolliet, Simone Ferraro, Blake Sherwin and the ACT Collaboration arXiv:2309.05659, arXiv:2311.04213, and arXiv:2409.02109

TMEX, 21st Recontres du Vietnam, Jan 7 2025, Quy Nohn, Vietnam

Learning from the distribution of matter in the universe:

- What is the nature of *dark matter* and *dark energy*?
- Is GR is the correct theory of gravity on all scales?
- What is the mass of the neutrinos?
- ...

Fundamental physics in the large scale structure

Image Credit: (nu): Agarwal & Feldman, Gerbino et al.; (ULAs): Mocz et al., Marsh et al.; (f(R)): He et al.

Fundamental physics in the large scale structure

Image Credit: (nu): Agarwal & Feldman, Gerbino et al.; (ULAs): Mocz et al., Marsh et al.; (f(R)): He et al.

Introduction to CMB lensing

Lensing probes projected matter density

 $\phi \sim \int_0^{\chi_\star} W_\phi(\chi) \delta_m(\hat{\boldsymbol{n}}\chi) d\chi$

$$\kappa = \boldsymbol{\nabla}^2 \phi$$

Introduction to CMB lensing

Lensing probes projected matter density

 $\phi \sim \int_0^{\chi_\star} W_\phi(\chi) \delta_m(\hat{\boldsymbol{n}}\chi) d\chi$

$$\kappa = \boldsymbol{\nabla}^2 \phi$$

Introduction to CMB lensing

Lensing probes projected matter density

 $\phi \sim \int_0^{\chi_\star} W_\phi(\chi) \delta_m(\hat{n}\chi) d\chi$

$$\kappa = \boldsymbol{\nabla}^2 \phi$$

Lensing reconstruction

Reconstruct lensing from off-diagonal correlations in CMB $\hat{\phi}(L) \sim \int d^2 I \tilde{\Theta}(I) \tilde{\Theta}(I-L) g(I,L)$

Lensing reconstruction

Lensing reconstruction

The lensing power spectrum - $\hat{C}_{\ell}^{\phi\phi}$

The lensing power spectrum - $\hat{C}_{\ell}^{\phi\phi}$

ACT DR6 + Planck PR4 Lensing $S_8^{\text{CMBL}} = 0.813 \pm 0.018$

ACT DR6 + Planck PR4 Lensing + BAO $\sigma_8 = 0.812 \pm 0.013$

cf. primary CMB aniso. (Planck 2018) $S_8^{\text{CMBL}} = 0.823 \pm 0.011$ $\sigma_8 = 0.811 \pm 0.006$

G.S. Farren: CMB $\phi \times$ unWISE δ_g

Narrowing in on the S_8 tension

$S_8 = \sigma_8 \left(rac{\Omega_m}{0.3} ight)^{0.5}$

Two possible resolutions?

- scale dependent suppression of power
 - non-linear structure growth
 - (stronger than expected) baryon feedback
 - ...
- redshift dependent suppression of power
 - dark energy evolution
 -

CMB lensing $\phi \times$ unWISE δ_g

The unWISE galaxy catalogue

- galaxies from the WISE survey
- \bullet >500 million galaxies
- $0 \lesssim z \lesssim 2.5$
- color selection for two samples

sample	Ī	$\bar{n} \; [\mathrm{deg}^{-2}]$
Blue	0.6	${\sim}3400$
Green	1.1	${\sim}1800$

ACT DR6 lensing \times unWISE - spectra

Probing different scales and redshifts

10

g

•
$$C_{\ell}^{\phi\phi}$$
: $z \gtrsim 1.0$ & $k \lesssim 0.2 h \,\mathrm{Mpc}^{-1}$

G.S. Farren: CMB $\phi \times$ unWISE δ_{σ}

Measuring S_8 with galaxy - CMB lensing cross-correlations

11

Highlights of CMB lensing \times unWISE analysis

- clustering redshifts for unWISE galaxies
- PCA based marginalisation over redshift uncertainties
- Hybrid HMCode + LPT model
- imaging systematics mitigation
- simulation based foreground tests
- extensive null- and consistency tests
- fully blind analysis

G.S. Farren: CMB $\phi \times$ unWISE δ_g

Cross-correlation constraints ($C_{\ell}^{gg} + C_{\ell}^{\phi g}$)

G.S. Farren: CMB $\phi \times$ unWISE δ_g

Joint analysis of C_{ℓ}^{gg} , $C_{\ell}^{\phi g}$, and $C_{\ell}^{\phi \phi}$ - 3x2pt

G.S. Farren: CMB $\phi \times$ unWISE δ_g

Comparing to other probes

What can we do apart from S_8/σ_8 ?

G.S. Farren: CMB $\phi \times$ unWISE δ_g

What can we do apart from S_8/σ_8 ?

G.S. Farren: CMB $\phi \times$ unWISE δ_g

What can we do apart from S_8/σ_8 ?

 H_0 from the equality scale

- can constrain H₀ without r_s (independent of BAO and CMB)
- without external data: $H_0 = 66.5^{+3.2}_{-3.7} \,\mathrm{km \, s^{-1} Mpc^{-1}}$
- with Ω_M from uncalib. SN:
 $$\label{eq:H0} \begin{split} \textbf{H}_0 &= \textbf{64}.\textbf{3}_{-2.4}^{+2.1}\,\mathrm{km}\,\mathrm{s}^{-1}\mathrm{Mpc}^{-1} \end{split}$$

Bonus: We have 3x2pt, what about Nx3pt?

measuring $\langle \delta_g \delta_g \phi \rangle$ -bispectrum

G.S. Farren: CMB $\phi \times$ unWISE δ_g

What to take away/look forward to?

- Powerful constraints on structure formation (including as a function of z)
- $\bullet\,$ and on H_0 independent from other probes
- everything consistent with *Planck* CMB (sorry!)
- data and likelihood available upon publication of 3x2pt paper ($\mathcal{O}(month)$)
- working on...
 - a) ACT DR6+ CMB lensing: $\sim 30\%$ larger SNR
 - b) unWISE+: deeper, multiband photometry for higher redshift samples, better systematics control
 - c) improved x-corr. redshifts with DESI data

G.S. Farren: CMB $\phi \times$ unWISE δ_g

The road ahead

What's next?

- New data: SO[†], DESI[†], LSST, Euclid
- Improved modelling: Hybrid EFT, joined photo. and spec. x-corr.
- Bispectra: fold in non-Gaussian/non-linear info.

[†]active member

DESI (2021-2026+)

Simons Observatory (2024-2029+)

VRO/LSST (2026-2036)

Thank you!