Theory meets experiment 2025 New frontiers in particle cosmology

> Will Handley <wh260@cam.ac.uk>

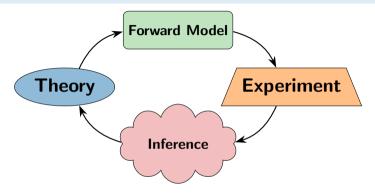
Royal Society University Research Fellow Institute of Astronomy, University of Cambridge Kavli Institute for Cosmology, Cambridge Gonville & Caius College willhandley.co.uk/talks

7th January 2024

<wh260@cam.ac.uk>

TMEX: Theory meets experiment

New frontiers in particle cosmology

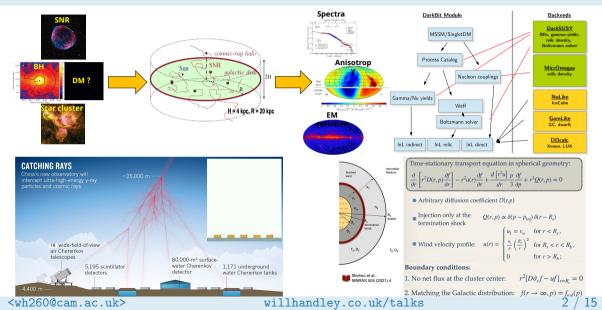


- Inference sits at the interface between theory and experiment
- Also called "inverse problems"
- Process is direct: "measurement"

<wh260@cam.ac.uk>

- This talk focuses on frontiers:
- 1. Simulation-based inference
- 2. GPU-accelerated inference

Examples of forward models from Monday



Bayesian & frequentist data combination

Multimessenger approaches

Frequentist

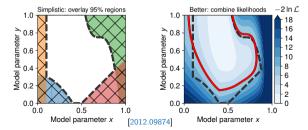
- Preferred by particle physicists & mathematicians
- Probability/stochasticity only in the data D
- Whether Bayesian or frequentist, If you have a model *M* with parameters θ, multiple datasets combine at the likelihood level:

$$P(D_1, D_2|\theta, M) = P(D_1|\theta, M)P(D_2|\theta, M)$$

$$\mathcal{L}_{joint} = \mathcal{L}_1 \times \mathcal{L}_2 \times \ldots \times \mathcal{L}_n$$

Bayesian

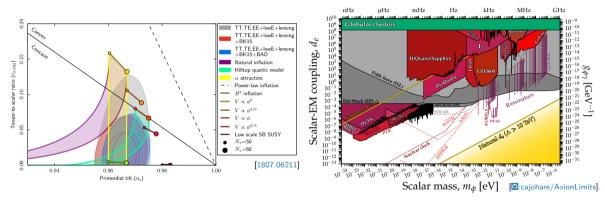
- Preferred by astronomers & machine learning/information theorists
- Quantifies all uncertainties in data & model (D, θ, M) using probability.



<wh260@cam.ac.uk>

An aside: difference in plotting

Exclusion vs. posterior plots



- Contours indicate allowed regions
- Preferred in astro/cosmology

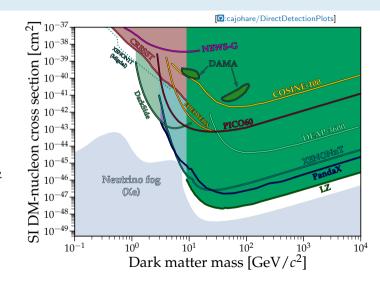
- Contours indicate excluded regions
- Preferred in particle physics

<wh260@cam.ac.uk>

An aside: difference in plotting

Exclusion vs. posterior plots

- Beware this kind of particularly confusing plot, which uses both!
- Here almost all of these are 2σ exclusion plots
- But 'DAMA' are (controversial & conflicting) superimposed constraints/allowed regions.



<wh260@cam.ac.uk>

The three pillars of (Bayesian) inference

Parameter estimation

What do the data tell us about the parameters of a model? e.g. the size or age of a $\land CDM$ universe

Model comparison

How much does the data support a particular model? *e.g.* ΛCDM vs a dynamic dark energy cosmology

Tension quantification

Do different datasets make consistent predictions from the same model? *e.g. CMB vs Type IA supernovae data*

 $\mathcal{R} = \frac{\mathcal{Z}_{AB}}{\mathcal{Z}_{A}\mathcal{Z}_{B}}$

$$g S = \langle \log \mathcal{L}_{AB} \rangle_{\mathcal{P}_{AB}} \\ - \langle \log \mathcal{L}_{A} \rangle_{\mathcal{P}_{A}} \\ - \langle \log \mathcal{L}_{B} \rangle_{\mathcal{P}_{B}}$$

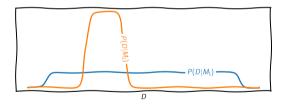
<wh260@cam.ac.uk>

Model comparison $\mathcal{Z} = P(D|M)$

Bayesian model comparison allows mathematical derivation of key philosophical principles. Viewed from data-space D: Viewed from parameter-space θ :

Popper's falsificationism

- Prefer models that make bold predictions.
- if proven true, model more likely correct.



Falsificationism comes from normalisation

Occam's razor

- Models should be as simple as possible
- ... but no simpler
- Occam's razor equation:

$$\log \mathcal{Z} = \langle \log \mathcal{L} \rangle_{\mathcal{P}} - \mathcal{D}_{\mathsf{KL}}$$

"Occam penalty": KL divergence between prior π and posterior \mathcal{P} .

<wh260@cam.ac.uk>

willhandley.co.uk/talks

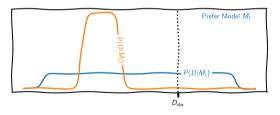
15

Model comparison $\mathcal{Z} = P(D|M)$

Bayesian model comparison allows mathematical derivation of key philosophical principles. Viewed from data-space D: Viewed from parameter-space θ :

Popper's falsificationism

- Prefer models that make bold predictions.
- if proven true, model more likely correct.



Falsificationism comes from normalisation

Occam's razor

- Models should be as simple as possible
- ... but no simpler
- Occam's razor equation:

$$\log \mathcal{Z} = \langle \log \mathcal{L} \rangle_{\mathcal{P}} - \mathcal{D}_{\mathsf{KL}}$$

"Occam penalty": KL divergence between prior π and posterior \mathcal{P} .

15

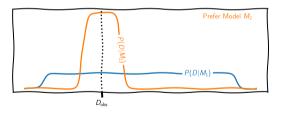
<wh260@cam.ac.uk>

Model comparison $\mathcal{Z} = P(D|M)$

Bayesian model comparison allows mathematical derivation of key philosophical principles. Viewed from data-space D: Viewed from parameter-space θ :

Popper's falsificationism

- Prefer models that make bold predictions.
- if proven true, model more likely correct.



Falsificationism comes from normalisation

Occam's razor

- Models should be as simple as possible
- ... but no simpler
- Occam's razor equation:

$$\log \mathcal{Z} = \langle \log \mathcal{L} \rangle_{\mathcal{P}} - \mathcal{D}_{\mathsf{KL}}$$

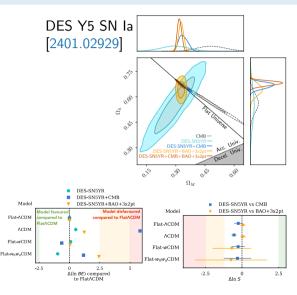
"Occam penalty": KL divergence between prior π and posterior \mathcal{P} .

<wh260@cam.ac.uk>

The standard approach if you are fortunate enough to have a likelihood function $P(D|\theta)$:

$$P(\theta|D) = rac{P(D|\theta)P(\theta)}{P(D)}$$

- 1. Define prior $\pi(\theta)$
 - spend some time being philosophical
- 2. Sample posterior $\mathcal{P}(\theta|D)$
 - use out-of-the-box MCMC tools such as emcee or MultiNest
 - make some triangle plots
- 3. Optionally compute evidence $\mathcal{Z}(D)$
 - e.g. nested sampling or parallel tempering
 - do some model comparison (i.e. science)
 - talk about tensions



<wh260@cam.ac.uk>

The standard approach if you are fortunate DES Y5 SN la enough to have a likelihood function $P(D|\theta)$: 2401.02929 Likelihood × Prior $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$ Posterior =0.70 Fvidence 0.60 ΩV Define prior $\pi(\theta)$ 1. 0,15 spend some time being philosophical 20 2. Sample posterior $\mathcal{P}(\theta|D)$ 15 200 0.FD use out-of-the-box MCMC tools such as Ω_M emcee or MultiNest Mode SES-SN5VR+BAO+3v2m DES-SN5YB vs CMB make some triangle plots Model DES-SN5YR vs BAO+3x2p Flat-ACDM mpared to anarad to ElatACDA 3. Optionally compute evidence $\mathcal{Z}(D)$ Flat-ACDM ACDM ACDM Flat_wCDM e.g. nested sampling or parallel tempering Flat-wCDM Flat-w-w_CDM ► do some model comparison (i.e. science) Flat-wow-CDM -2.5 2.5 talk about tensions $\Delta(\ln BE)$ compared -2.5 to FlatACDM $A \ln S$

<wh260@cam.ac.uk>

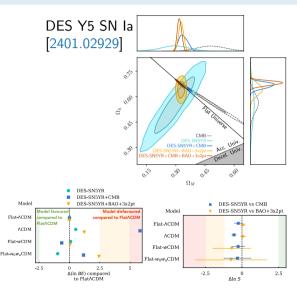
The standard approach if you are fortunate DES Y5 SN la enough to have a likelihood function $\mathcal{L}(D|\theta)$: 2401.02929 Likelihood × Prior $\mathcal{P}(\theta|D) = \frac{\mathcal{L}(D|\theta)\pi(\theta)}{\mathcal{Z}(D)}$ Posterior =0.70 Evidence 0.60 ΩV Define prior $\pi(\theta)$ 1. 0,15 spend some time being philosophical 20 2. Sample posterior $\mathcal{P}(\theta|D)$ 12 30 0.GC use out-of-the-box MCMC tools such as Ω_M emcee or MultiNest Mode SES-SN5VR+BAO+3v2m DES-SN5YB vs CMB make some triangle plots Model DES-SN5YR vs BAO+3x2p mpared to FlatACDM Flat-ACDM mpared to 3. Optionally compute evidence $\mathcal{Z}(D)$ Flat-ACDM ACDM ACDM Flat_wCDM e.g. nested sampling or parallel tempering Flat-wCDM Flat-w-w_CDM ► do some model comparison (i.e. science) Flat-wow-CDM -2.5 2.5 talk about tensions $\Delta(\ln BE)$ compared -2.5 to FlatACDM $A \ln S$

<wh260@cam.ac.uk>

The standard approach if you are fortunate enough to have a likelihood function $\mathcal{L}(D|\theta)$:

 $P(\theta|D)P(D) = P(\theta, D) = P(D|\theta)P(\theta),$

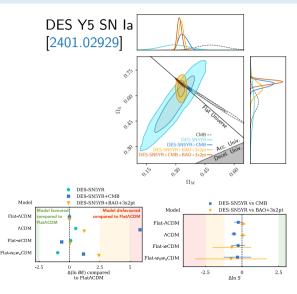
- 1. Define prior $\pi(\theta)$
 - spend some time being philosophical
- 2. Sample posterior $\mathcal{P}(\theta|D)$
 - use out-of-the-box MCMC tools such as emcee or MultiNest
 - make some triangle plots
- 3. Optionally compute evidence $\mathcal{Z}(D)$
 - e.g. nested sampling or parallel tempering
 - do some model comparison (i.e. science)
 - talk about tensions



<wh260@cam.ac.uk>

The standard approach if you are fortunate enough to have a likelihood function $\mathcal{L}(D|\theta)$:

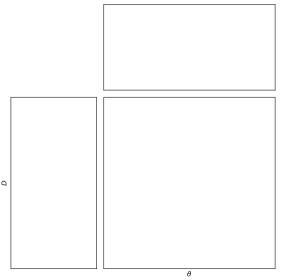
- $\mathcal{P} \times \mathcal{Z} = \mathcal{J} = \mathcal{L} \times \pi$, Joint $= \mathcal{J} = P(\theta, D)$
- **1**. Define prior $\pi(\theta)$
 - spend some time being philosophical
- 2. Sample posterior $\mathcal{P}(\theta|D)$
 - use out-of-the-box MCMC tools such as emcee or MultiNest
 - make some triangle plots
- 3. Optionally compute evidence $\mathcal{Z}(D)$
 - e.g. nested sampling or parallel tempering
 - do some model comparison (i.e. science)
 - talk about tensions



<wh260@cam.ac.uk>

- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [:handley-lab/lsbi].

<wh260@cam.ac.uk>



- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].

<wh260@cam.ac.uk>

$c(D|\theta) =$ A willhandley.co.uk/talks

15

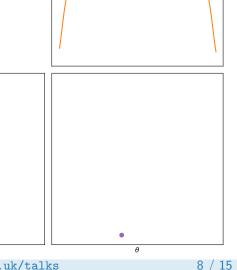
- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [:handley-lab/lsbi].

<wh260@cam.ac.uk>

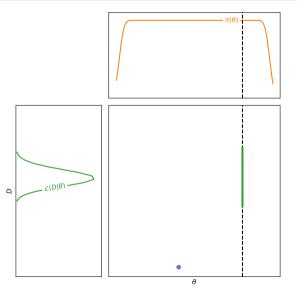
$c(D|\theta) =$ A willhandley.co.uk/talks 15

- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta, D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [:handley-lab/lsbi].

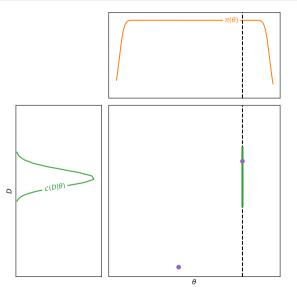
<wh260@cam.ac.uk>



- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- ► Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].



- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- ► Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].



- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].

<wh260@cam.ac.uk>

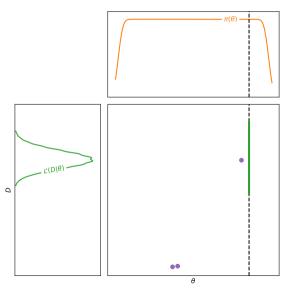
$c(D|\theta) =$ A willhandley.co.uk/talks

15

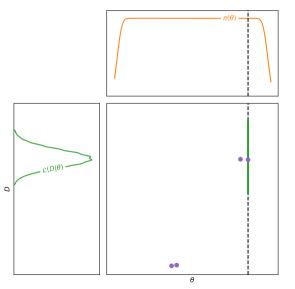
- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].

<wh260@cam.ac.uk>

- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- ► Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [:handley-lab/lsbi].

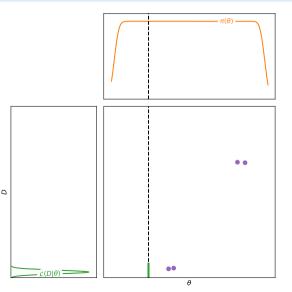


- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- ► Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [Q:handley-lab/lsbi].



- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].

<wh260@cam.ac.uk>

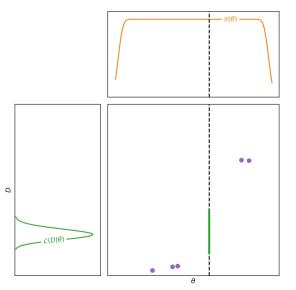


- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- ► Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].

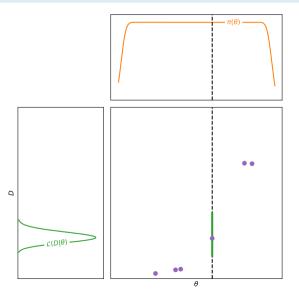
<wh260@cam.ac.uk>

. A

- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(θ|D) and evidence *Z*(D) and possibly likelihood *L*(D|θ).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].

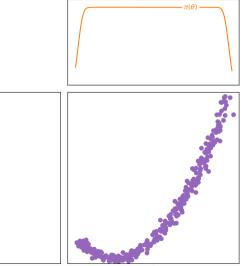


- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [:handley-lab/lsbi].



- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].

willhandley.co.uk/talks



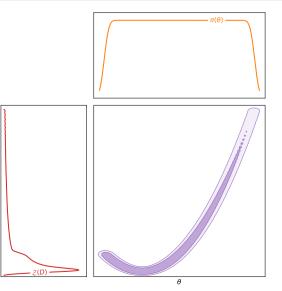
8 / 15

- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].

willhandley.co.uk/talks

A

- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].

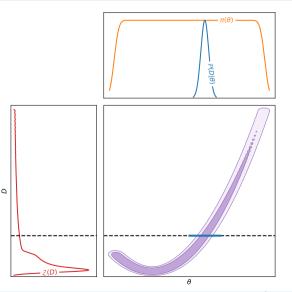


<wh260@cam.ac.uk>

willhandley.co.uk/talks

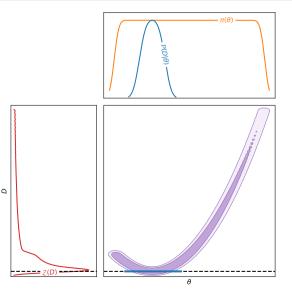
Ω

- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(θ|D) and evidence *Z*(D) and possibly likelihood *L*(D|θ).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].



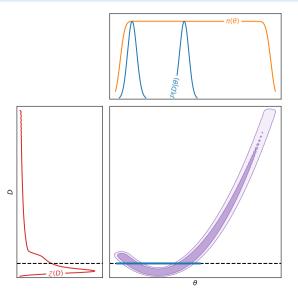
<wh260@cam.ac.uk>

- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].

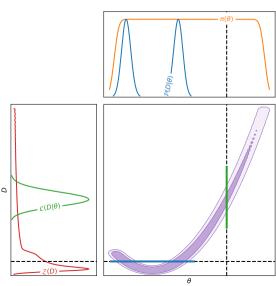


<wh260@cam.ac.uk>

- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- ► Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [S:handley-lab/lsbi].



- What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \rightarrow D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior π(θ) can generate samples from joint distribution J(θ, D) = L(D|θ)π(θ) the "probability of everything".
- ► Task of SBI is take joint *J* samples and learn posterior *P*(*θ*|*D*) and evidence *Z*(*D*) and possibly likelihood *L*(*D*|*θ*).
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning [:handley-lab/lsbi].



<wh260@cam.ac.uk>

Why SBI?

SBI is useful because:

- 1. If you don't have a likelihood, you can still do inference
 - This is the usual case beyond CMB cosmology
- 2. Faster than LBI
 - emulation also applies to LBI in principle
- 3. No need to pragmatically encode fiducial cosmologies
 - Covariance computation implicitly encoded in simulations
 - Highly relevant for disentangling tensions & systematics
- 4. Equips AI/ML with Bayesian interpretability
- 5. Lower barrier to entry than LBI
 - Much easier to forward model a systematic
 - Emerging set of plug-and-play packages
 - For this reason alone, it will come to dominate scientific inference

<wh260@cam.ac.uk>

SBI in astrophysics

- 2024 has been the year it has started to be applied to real data.
- Mostly for weak lensing
- However: SBI requires mock data generation code
- Most data analysis codes were built before the generative paradigm.
- It's still a lot of work to upgrade cosmological likelihoods to be able to do this (e.g. plik & camspec).
- [O:smsharma/awesome-neural-sbi]

Investigating the turbulent hot gas in X-COP galaxy clusters

S. Dupourqué¹, N. Clerc¹, E. Pointecouteau¹, D. Eckert², S. Ettori³, and F. Vazza^{4,5,6}

Dark Energy Survey Year 3 results: simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps II. Cosmological results

M. Gatti,^{1, +} G. Campailla,² N. Jeffrey,³ L. Whiteway,³ A. Porredon,⁴ J. Prat,⁵ J. Williamson,³ M. Raveri,² B.

Neural Posterior Estimation with guaranteed exact coverage: the ringdown of GW150914

Marco Crisostomi^{1,2}, Kallol Dey³, Enrico Barausse^{1,2}, Roberto Trotta^{1,2,4,5}

Applying Simulation-Based Inference to Spectral and Spatial Information from the Galactic Center Gamma-Ray Excess

Katharena Christy,^a Eric J. Baxter,^b Jason Kumar^a

KiDS-1000 and DES-Y1 combined: Cosmology from peak count statistics

Joachim Hamois-Déraps¹⁴, Sven Heydenreich², Benjamin Giblin³, Nicolas Martinet⁴, Tilman Tröster⁶, Marika Asgari^{1,63}, Pierre Burger^{6,8,10} Tiago Castro^{1,12,13,14}, Klaus Dolag¹⁵, Catherine Heymans^{3,16}, Hendrik Hildebrandt¹⁶, Benjamin Joachimi¹⁷ & Angus H. Wright¹⁶

KIDS-SBI: Simulation-Based Inference Analysis of KIDS-1000 Cosmic Shear

Maximilian von Wietersheim-Kramsta^{1,2,3}, Kiyam Lin¹, Nicolas Tessore¹, Benjamin Joachimi¹, Arthur Loureiro^{6,5}, Robert Reischke^{6,7}, and Angus H. Wright⁷

Simulation-based inference of deep fields: galaxy population model and redshift distributions

Beatrice Moser,^{a,1} Tomasz Kacprzak,^{a,b} Silvan Fischbacher,^a Alexandre Refregier,^a Dominic Grimm,^a Luca Tortorelli^c

SDBIG: Cosmological Constraints using Simulation-Based Inference of Galaxy Clustering with Marked Power Spectra

ELEMA MASSARA \bigcirc ^{1,2,*} Changedon Hars \bigcirc ³ Michael Eckenberg, ⁶ Serley Ho,⁵ James Hou,^{6,7} Pareo Lemos,^{6,6,8,5} Chirley Mora,^{6,8} Araksik Moransererasi Dergan \bigcirc ^{9,111} Liam Pareer,^{6,12} and Bienno Rolandon-Sante Handerand \bigcirc ⁴

Cosmology from HSC Y1 Weak Lensing with Combined Higher-Order Statistics and Simulation-based Inference

Camila P. Novaes^{1,2,3},* Leander Thiele^{2,3},† Joaquin Armijo^{2,3}, Sihao Cheng^{4,5}, Jessica A. Cowell^{2,3,6}, Gabriela A. Marques^{7,8}, Elisa G. M. Ferreira^{2,3}, Masato Shirasaki^{9,10}, Ken Osato^{11,12,2}, and Jia Liu^{2,3}

15

Neural Ratio Estimation

- SBI flavours: github.com/sbi-dev/sbi
 - NPE Neural posterior estimation
 - NLE Neural likelihood estimation
 - NJE Neural joint estimation
 - NRE Neural ratio estimation
- NRE recap:
 - 1. Generate joint samples $(\theta, D) \sim \mathcal{J}$
 - straightforward if you have a simulator: $\theta \sim \pi(\cdot)$, $D \sim \mathcal{L}(\cdot|\theta)$
 - 2. Generate separated samples $\theta \sim \pi$, $D \sim \mathcal{Z}$
 - aside: can shortcut step 2 by scrambling the (θ, D) pairings from step 1
 - 3. Train probabilistic classifier p to distinguish whether (θ, D) came from \mathcal{J} or $\pi \times \mathcal{Z}$.

4.
$$\frac{p}{1-p} = r = \frac{P(\theta,D)}{P(\theta)P(D)} = \frac{\mathcal{J}}{\pi \times \mathcal{Z}} = \frac{\mathcal{L}}{\mathcal{Z}} = \frac{\mathcal{P}}{\pi}.$$

5. Use ratio *r* for parameter estimation $\mathcal{P} = r \times \pi$

willhandley.co.uk/talks

θ

D

p

Neural Ratio Estimation

- SBI flavours: github.com/sbi-dev/sbi
 - NPE Neural posterior estimation
 - NLE Neural likelihood estimation
 - NJE Neural joint estimation
 - NRE Neural ratio estimation
- NRE recap:
 - 1. Generate joint samples $(\theta, D) \sim \mathcal{J}$
 - straightforward if you have a simulator: $\theta \sim \pi(\cdot)$, $D \sim \mathcal{L}(\cdot|\theta)$
 - 2. Generate separated samples $\theta \sim \pi$, $D \sim \mathcal{Z}$
 - aside: can shortcut step 2 by scrambling the (θ, D) pairings from step 1
 - 3. Train probabilistic classifier p to distinguish whether (θ, D) came from \mathcal{J} or $\pi \times \mathcal{Z}$.

4.
$$\frac{p}{1-p} = r = \frac{P(\theta,D)}{P(\theta)P(D)} = \frac{\mathcal{J}}{\pi \times \mathcal{Z}} = \frac{\mathcal{L}}{\mathcal{Z}} = \frac{\mathcal{P}}{\pi}$$

5. Use ratio *r* for parameter estimation $\mathcal{P} = r \times \pi$

Bayesian proof

- Let $M_{\mathcal{J}}$: $(\theta, D) \sim \mathcal{J}$, $M_{\pi \mathcal{Z}}$: $(\theta, D) \sim \pi \times \mathcal{Z}$
- Classifier gives $p(\theta, D) = P(M_{\mathcal{J}}|\theta, D) = 1 - P(M_{\pi Z}|\theta, D)$
- ▶ Bayes theorem then shows $\frac{p}{1-p} = \frac{P(M_{\mathcal{J}}|\theta,D)}{P(M_{\pi Z}|\theta,D)} = \frac{P(\theta,D|M_{\mathcal{J}})P(M_{\mathcal{J}})}{P(\theta,D|M_{\pi Z})P(M_{\pi Z})} = \frac{\mathcal{J}}{\pi Z},$ where we have assumed
 - $P(M_{\mathcal{J}}) = P(M_{\pi \mathcal{Z}}),$

and by definition

- $\mathcal{J}(\theta, D) = P(\theta, D|M_{\mathcal{J}})$
- $\pi(\theta)\mathcal{Z}(D) = P(\theta, D|M_{\pi \mathcal{Z}}).$

<wh260@cam.ac.uk>

Neural Ratio Estimation

- SBI flavours: github.com/sbi-dev/sbi
 - NPE Neural posterior estimation
 - NLE Neural likelihood estimation
 - NJE Neural joint estimation
 - NRE Neural ratio estimation
- NRE recap:
 - 1. Generate joint samples $(\theta, D) \sim \mathcal{J}$
 - straightforward if you have a simulator: $\theta \sim \pi(\cdot)$, $D \sim \mathcal{L}(\cdot|\theta)$
 - 2. Generate separated samples $\theta \sim \pi$, $D \sim \mathcal{Z}$
 - aside: can shortcut step 2 by scrambling the (θ, D) pairings from step 1
 - 3. Train probabilistic classifier p to distinguish whether (θ, D) came from \mathcal{J} or $\pi \times \mathcal{Z}$.

4.
$$\frac{p}{1-p} = r = \frac{P(\theta,D)}{P(\theta)P(D)} = \frac{\mathcal{J}}{\pi \times \mathcal{Z}} = \frac{\mathcal{L}}{\mathcal{Z}} = \frac{\mathcal{P}}{\pi}$$

5. Use ratio *r* for parameter estimation $\mathcal{P} = \mathbf{r} \times \pi$

Why I like NRE

- The link between classification and inference is profound.
- Density estimation is hard Dimensionless r divides out the hard-to-calculate parts.

Why I don't like NRE

- Practical implementations require marginalisation [2107.01214], or autoregression [2308.08597].
- Model comparison and parameter estimation are separate [2305.11241].

<wh260@cam.ac.uk>

I want (my student) to get started with SBI...

the swyft package

- Ratio estimation
- astro/cosmology specific examples

swyft.readthedocs.io/en/stable

the pydelfi package

- Neural density estimation
- astro/cosmology specific examples

justinalsing.github.io/pydelfi

the sbi package

- General package
- Not domain specific
- A lot of (opaquely named) methods

sbi-dev.github.io/sbi/latest/tutorials

All methods generally require:

- A forward simulator
- A data compressor

All methods either:

- "Amortized" over data D
- "Sequential" tuning to D_{obs}

willhandley.co.uk/talks

<wh260@cam.ac.uk>

GPU-accelerated inference

CMB cosmopower [2106.03846]

- CMB candl [2401.13433]
- SNe BayesSN [2401.08755]
- SGW Eryn [2303.02164]
 - GW redback [2308.12806]
 - GW ripple [2302.05329]
 - EP ExoJAX [2105.14782]
 - X jaxspec [2409.05757]

[C:JAXtronomy]

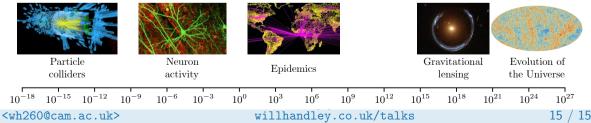
- Increase in the number of cosmological codes written for GPUs (particularly jax).
- Over the next few years, more and more analyses will be done on GPUs.
- Several trends trigger this
 - the rise of machine learning, whose linear algebra is well-suited to GPUs
 - the creation of usable languages for GPU programming (e.g. jax, pytorch, tensorflow)
 - the rise of large language models, which ease writing codes for GPUs
- Prediction: low-power GPUs (likely ARM-based) will become the norm for scientific computing.

- very recent work over the past month
- Have implemented a nested slice sampler in blackjax [O:blackjax-devs/blackjax/pull/755].

```
pip install git+https://github.com/handley-lab/blackjax@nested_sampling
import blackjax.ns.adaptive
```

- Think MultiNest for jax.
- Plugs into jim [S:kazewong/jim] and ripple [2302.05329]

- Inference bridges theory and experiment, crucial for extracting information from data.
- Simulation-Based Inference (SBI) enables inference when the likelihood is intractable, using simulations and machine learning. SBI is becoming increasingly popular for complex astrophysical analyses.
- GPU-accelerated inference is transforming the field, allowing faster and more complex computations. Tools like jax are empowering a new generation of GPU-ready inference codes.



Frontiers of simulation based inference [1911.01429]