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TMEX: Theory meets experiment

New frontiers in particle cosmology

Forward Model

/ Experiment \

» Inference sits at the interface between » This talk focuses on frontiers:

theory and experiment
1. Simulation-based inference

» Also called “inverse problems”
2. GPU-accelerated inference

» Process is direct: “measurement”
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Examples of forward models from Monday
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Time-stationary transport equation in spherical geometry:
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termination shock
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18 wide-field-of-view ® Wind velocity profile:  u(r) = 4 “ (_) forR, <r<R,,
air Cherenkov 0 T\
telescopes O e e 0 for r > Ry;

5,195 scintillator water Cherenkov 1,171 underground Boundary conditions:

detectors detector water Cherenkov tanks Morino et a, A

WP IRmAS 504 (2021) 4 1. No net flux at the cluster center: r’[Do,f— ufl,_p =0
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Bayesian & frequentist data combination

Multimessenger approaches

Frequentist Bayesian
» Preferred by particle physicists & > Preferred by astronomers & machine
mathematicians learning /information theorists
» Probability/stochasticity only in the > Quantifies all uncertainties in data &
data D model (D, 8, M) using probability.
. . Simplistic: overlay 95% regions Better: combine likelihoods —21In L
» Whether Bayesian or frequentist, If you have '] 10 18
. . 1
a model M with parameters 6, multiple 2o S Foe \ 10
datasets combine at the likelihood level: §°6‘§E ¥ §0° | |88
%‘04‘ %04
P(D1, D50, M) = P(D1|60, M)P(D5|0, M) =024 > s02
%0 05 1.0 %0 05 1.0
Ejoint = ‘Cl X £2 X ... X Cn Model parameter X [2012.09874] Model parameter x
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An aside: difference in plotting
Exclusion vs. posterior plots
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» Contours indicate allowed regions » Contours indicate excluded regions

» Preferred in astro/cosmology » Preferred in particle physics
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An aside: difference in plotting

Exclusion vs. posterior plots

» Beware this kind of particularly
confusing plot, which uses both!

» Here almost all of these are 20
exclusion plots

» But 'DAMA’ are (controversial &
conflicting) superimposed
constraints/allowed regions.
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The three pillars of (Bayesian) inference

Parameter estimation Model comparison Tension quantification
What do the data tell us about How much does the data Do different datasets make
the parameters of a model? support a particular model?  consistent predictions from the
e.g. the size or age of a A\CDM e.g. ACDM vs a dynamic same model? e.g. CMB vs
universe dark energy cosmology Type IA supernovae data
P(DI0, M)P(6|M) P(D|M)P(M z
P(OID, M) = =220 p(m|D) = ZLIMP(M) R— B
(DIM) P(D) ZpZp
_ Zmlly
73 _ E; T m |0g8 = <|Og »CAB>73AB
O . . : —log £A>7>A
Posterior — Likelihood x Prior Posterior — Evidence x Prior
ostenorn = Evidence "~ Normalisation —(log L&),
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Model comparison Z = P(D|M)

» Bayesian model comparison allows mathematical derivation of key philosophical principles.

Viewed from data-space D: Viewed from parameter-space 6:

Popper’s falsificationism Occam'’s razor
» Prefer models that make bold predictions. > Models should be as simple as possible
> if proven true, model more likely correct. > ... but no simpler

» Occam'’s razor equation:

log Z = (log L), — DkL

/[ RN

D

v

“Occam penalty”: KL divergence between
and posterior P.

» Falsificationism comes from normalisation

DKL ~ |og .
Posterior volume
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Model comparison Z = P(D|M)

» Bayesian model comparison allows mathematical derivation of key philosophical principles.

Viewed from data-space D: Viewed from parameter-space 6:

Popper’s falsificationism Occam'’s razor

» Prefer models that make bold predictions. >
>

Models should be as simple as possible
if proven true, model more likely correct. > ...but no simpler

Prefer Model M; » Occam’s razor equation:

log Z = (log L), — DkL

“Occam penalty”: KL divergence between
D and posterior P.

v

» Falsificationism comes from normalisation

DKL ~ |og .
Posterior volume
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LBI: Likelihood-based inference

The standard approach if you are fortunate
enough to have a likelihood function P(D|0):

P(0|D) =

1. Define prior 7(6)
> spend some time being philosophical

2. Sample posterior P(0|D)
> use out-of-the-box MCMC tools such as
emcee or MultiNest
> make some triangle plots
3

<wh260Q@cam.ac.uk>

P(D|0)P(0)

. Optionally compute evidence Z(D)
> e.g. nested sampling or parallel tempering
> do some model comparison (i.e. science)
> talk about tensions
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LBI: Likelihood-based inference

The standard approach if you are fortunate
enough to have a likelihood function P(D|0):

P(DI0)P(0)

PUID) = =55,

1. Define prior 7(0)

Posterior =

> spend some time being philosophical

2. Sample posterior P(0|D)

DES Y5 SN la

[2401.02929]
Likelihood x Prior ®
Evidence .

> use out-of-the-box MCMC tools such as

emcee or MultiNest
> make some triangle plots

3. Optionally compute evidence Z (D)

> e.g. nested sampling or parallel tempering
> do some model comparison (i.e. science)

> talk about tensions
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LBI: Likelihood-based inference

The standard approach if you are fortunate
enough to have a likelihood function £(D|0):

£(D9)(0)

DES Y5 SN la
[2401.02929]

Likelihood x Prior

PO|D) = Posterior =

Z(D)
1. Define prior 7(f)

> spend some time being philosophical
2. Sample posterior P(0|D)

> use out-of-the-box MCMC tools such as
emcee or MultiNest
> make some triangle plots

3. Optionally compute evidence Z (D)

> e.g. nested sampling or parallel tempering
> do some model comparison (i.e. science)

> talk about tensions
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LBI: Likelihood-based inference

The standard approach if you are fortunate
enough to have a likelihood function £(D|0):

P(|D)P(D) = P(0,D) = P(D[#)P(0),

1. Define prior 7(6)
> spend some time being philosophical
2. Sample posterior P(0|D)
» use out-of-the-box MCMC tools such as
emcee or MultiNest
> make some triangle plots
3. Optionally compute evidence Z(D)

> e.g. nested sampling or parallel tempering
> do some model comparison (i.e. science)
> talk about tensions
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LBI: Likelihood-based inference

The standard approach if you are fortunate
enough to have a likelihood function £(D|0):

PxZ=7=Lxm, Joint =7 = P(0,D)
1. Define prior 7(6)
> spend some time being philosophical
2. Sample posterior P(0|D)
» use out-of-the-box MCMC tools such as
emcee or MultiNest
> make some triangle plots
3. Optionally compute evidence Z(D)
> e.g. nested sampling or parallel tempering
> do some model comparison (i.e. science)
> talk about tensions
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SBI: Simulation-based inference

» What do you do if you don't know L(D|0)?

» If you have a simulator/forward model
0 — D defines an implicit likelihood L.

» Simulator generates samples from L(-|0)).

» With a prior 77(f) can generate samples from
joint distribution 7 (0, D) = L(D|0)7(0)
the “probability of everything”.
» Task of SBI is take joint 7 samples and
learn posterior P(0|D) and evidence Z(D) a
and possibly likelihood £(D|0).
> Present state of the art achieves this using
machine learning (neural networks).

> My group’s research tries to removes machine
learning [[®:handley-lab/Isbi]. o
<wh260@cam.ac.uk> willhandley.co.uk/talks 8 /15
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Why SBI?

SBI is useful because:
1.

. Faster than LBI

. No need to pragmatically encode fiducial cosmologies

. Lower barrier to entry than LBI

N o=

If you don't have a likelihood, you can still do
inference

> This is the usual case beyond CMB cosmology

[@:sbi-dev]

> emulation — also applies to LBI in principle

» Covariance computation implicitly encoded in simulations [ undark |ab/swyft]
» Highly relevant for disentangling tensions & systematics & B,

PYSELFI

Equips Al/ML with Bayesian interpretability —_———

[@:florent-leclercq/pyselfi]
» Much easier to forward model a systematic

» Emerging set of plug-and-play packages
> For this reason alone, it will come to dominate scientific
inference [@:justinalsing /pydelfi]
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SBI in astrophysics

» 2024 has been the year it has
started to be applied to real data.

» Mostly for weak lensing

» However: SBI requires mock data
generation code

» Most data analysis codes were built
before the generative paradigm.

> It's still a lot of work to upgrade
cosmological likelihoods to be able
to do this (e.g. plik & camspec).

v

[@:smsharma/awesome-neural-sbi]

<wh260Q@cam.ac.uk>

Investigating the turbulent hot gas in X-COP galaxy clusters

. Dupourqué’, N. Clere!, E. Pointccoutean', D, Eckert, S. Ettori’, and F. Vazza 3¢

Dark Energy Survey Year § results: simulation-based cosmological inforence with wavelet

harmonics, scattering transforms, and moments of weak lensing mass maps I1. Cosmological
results
M. Gatti,* G. Compailla? N. Joffrey,3 L. Whiteway.® A. Porredon,t J. Prat.* J. Willamson,? M. Raveri? B

Neural Posterior Estimation with guaranteed exact coverage:
the ringdown of GW150914

Marco Crisostomi'2, Kallol Dey?, Enrico Barausse! 2, Roberto Trottal 245

Applying Simulation-Based Inference
to Spectral and Spatial Information
from the Galactic Center Gamma-Ray
Excess

Katharena Christy,” Eric J. Baxter," Jason Kumar®

willhandley.co.uk/talks

KiDS-1000 and DES-Y1 combined: Cosmology from peak count
statistics

Sven Heydenreich?, Benjamin Giblin’, Nicolas Martinet’,
Pierre Burger**'", Tiago Castro' 121314,
ans™'%, Hendrik Hildebrand', Benjamin Joachimi'” &

Joachim Harnois-Déraps'*

a
Angus H. Wright'*

KiDS-SBI: Simulation-Based Inference Analysis of KiDS-1000
Cosmic Shear

Simulation-based inference of deep
fields: galaxy population model and
redshift distributions

Beatrice Moser,”! Tomasz Kacprzak," Silvan Fischbacher,"
Alexandre Refregier,” Dominic Grimm,” Luca Tortorelli*

SIBIG: Cosmological Constrai

Cosmology from HSC Y1 Weak Lensi
Simula

g with Combined Higher-Order Statistics and
n-based Inference
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Neural Ratio Estimation

» SBI flavours: github.com/sbi-dev/sbi
NPE Neural posterior estimation
NLE Neural likelihood estimation
NJE Neural joint estimation
NRE Neural ratio estimation
» NRE recap:
1. Generate joint samples (6, D) ~ 7
> straightforward if you have a simulator:
0~ , D~ L(:0)
2. Generate separated samples § ~ 7, D ~ Z

> aside: can shortcut step 2 by scrambling the
(6, D) pairings from step 1

3. Train probabilistic classifier p to distinguish

whether (0, D) came from 7 or 7 x Z.

p _,_ _POD _ g7 _L_P
4. T == .

P(OP(D) ~ 7xz  Z
5. Use ratio r for parameter estimation P = rxz
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» SBI flavours:

github.com/sbi-dev/sbi
NPE Neural posterior estimation

NLE Neural likelihood estimation

NJE Neural joint estimation

NRE Neural ratio estimation

» NRE recap:

1.

4.
5.

Generate joint samples (6,D) ~ J
> straightforward if you have a simulator:

Bayesian proof
> Let M: (9, D) ~J, M, z: (0, D) ~
» Classifier gives

» Bayes theorem then shows

X Z

. _ PMs16,D) _ PODIM7)P(Ms) _ T
0 ~ (), D~ L(]0) I—p ~ P(M.z[0.D) — P(,DIM.z)P(M.z) ~ 2’
Generate separated samples 0 ~ 7, D ~ Z where we have assumed
> aside: can shortcut step 2 by scrambling the > P(M\«]) =P(M.,z),
(6, D) pairings from step 1 and by definition
Train probabilistic classifier p to distinguish > 7(0,D) = P(§, D|My)
whether (0, D) came from 7 or 7w x Z. ' _ y
L=r(= P)(O,D) __J _L_P g Z(D)7P(97D|M Z)'
i-p P(6)P(D) xXZ ~ Z
Use ratio r for parameter estimation P = rxmw
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C1p P(9)P(D) xXZ ~ Z

5. Use ratio r for parameter estimation P = rxmw
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Why | like NRE

» The link between classification and inference
is profound.

» Density estimation is hard — Dimensionless r
divides out the hard-to-calculate parts.

Why | don’t like NRE

» Practical implementations require
marginalisation [2107.01214], or
autoregression [2308.08597].

» Model comparison and parameter estimation
are separate [2305.11241].
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| want (my student) to get started with SBI...

.. where should | send them?

the sbi package

the swyft package > General package

» Ratio estimation » Not domain specific

> astro/cosmology specific examples > A lot of (opaquely named) methods
swyft.readthedocs.io/en/stable sbi-dev.github.io/sbi/latest/tutorials

h " All methods generally require:
the pydelfi package .
Py P g » A forward simulator
> Neural density estimation
» A data compressor
» astro/cosmology specific examples )
/ gy sp P All methods either:
justinalsing.github.i delfi " . "
justinalsing.github.io/pydelfi » “Amortized” over data D

» “Sequential” tuning to Dgps
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GPU-accelerated inference

» Increase in the number of cosmological codes
CMB cosmopower [2106.03846] written for GPUs (particularly jax).

CMB candl [2401.13433]
SNe BayesSN [2401.08755] will be done on GPUs.

SGW Eryn [2303.02164] Several trends trigger this
GW redback [2308.12806]

v

Over the next few years, more and more analyses

v

> the rise of machine learning, whose linear algebra is
well-suited to GPUs

GW ripple [2302.05329] > the creation of usable languages for GPU
EP ExoJAX [2105.14782] programming (e.g. jax, pytorch, tensorflow)
i > the rise of large language models, which ease
X jaxspec [2409.05757] writing codes for GPUs

[@:JAXtronomy]

v

Prediction: low-power GPUs (likely ARM-based)
will become the norm for scientific computing.
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David Yallup @
Jax-based nested samplers .

PDRA

> very recent work over the past month

v

Have implemented a nested slice sampler in blackjax [[@:blackjax-devs/blackjax/pull/755].

1 pip install git+https://github.com/handley-lab/blackjax@nested_sampling
2 import blackjax.ns.adaptive

v

Think MultiNest for jax.
Plugs into jim [[@:kazewong/jim] and ripple [2302.05329]

v
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Conclusions
[@:handley-lab]

*» Inference bridges theory and experiment, crucial for extracting information from data.
» Simulation-Based Inference (SBI) enables inference when the likelihood is intractable,
using simulations and machine learning. SBI is becoming increasingly popular for complex

astrophysical analyses.
» GPU-accelerated inference is transforming the field, allowing faster and more complex
computations. Tools like jax are empowering a new generation of GPU-ready inference

codes.

Particle Neuron Gravitational Evolution of

colliders activity Epidemics lensing the Universe
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