Technical University of Munich

High-energy neutrinos from NGC 1068 And the emerging class of Seyfert galaxies

Chiara Bellenghi on behalf of the IceCube collaboration

Chiara Bellenghi — TMEX 2025, Quy Nhon — 06/01/2025

SFB 1258

Multimessenger connections

2

Neutrinos

In the multimessenger context

black

holes

 \bigstar

• A cosmic **proton** accelerator neutrinos & γ-rays.

Chiara Bellenghi — TMEX2025

Messengers

¥-

AGNS, SNRS, GRBS...

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

They are weak, neutral particles that point to their sources and carry information from deep within their origins. Earth

Cosmic rays

They are charged particles and are deflected by magnetic fields.

* *

air shower

Neutrinos

In the multimessenger context

Chiara Bellenghi — TMEX2025

- A cosmic **proton** accelerator neutrinos & y-rays.
- Standard picture: **Expect** similar fluxes of neutrinos and gamma-rays on Earth.
- The cosmic-ray, neutrino, and gamma-ray backgrounds support this scenario.

RENCONTRES DUVIETNAM

 Sr s^{-1} 10^{-10} $E^2 \cdot \Phi \, [\text{GeV cm}^{-2}]$

The first neutrino source

IceCube, Science (2018b)

The first neutrino source

The second source and the puzzle of missing γ rays

A multimessenger puzzle γ-ray-obscured AGN

- November 2022: IceCube publishes evidence for TeV neutrino emission from the nearby active galaxy NGC 1068.
- GeV γ-ray flux measured by Fermi ~100x smaller than the neutrino flux.
- Upper limits from MAGIC constrain the TeV γ ray flux ~100x below the neutrino flux.
- No correlation between neutrino and highenergy γ-ray emissions in NGC 1068?

Chiara Bellenghi — TMEX2025

RENCONTRES DUVIETNAM

High-energy emission from NGC 1068

AGN – Main components

RENCONTRES DUVIETNAM

Chiara Bellenghi

The X-ray-bright Seyfert NGC 1068 SFB 1258 Neutrinos Dark Matter

Where do IceCube neutrinos come from?

• The only region not proved to be too weak to provide the measured neutrino power is the region in the vicinity of the BH

The X-ray corona?

- NGC 1068 among the brightest X-ray AGN in the universe.
- The SB galaxy likely source of the observed γ rays.

RENCONTRES DUVIETNAM

Component Star formation Jet Outflow (UFO) BH vicinity

Chiara Bellenghi — TMEX2025

<u>Padovani, Resconi, Ajello, C.B. et al, Nat. Astr. (2024)</u>

Messengers

The X-ray corona

As neutrino source and γ -ray absorber

- Assume a p-γ standard scenario.
- X-ray photons are target for neutrino production:

$$E_{p,\text{thr}} \propto \frac{m_p m_\pi}{E_\gamma} \to E_\nu \sim 40 - 400 \text{ TeV}$$

- Maybe the X-ray flux is directly related to the neutrino flux observed on Earth.
- TeV γ rays need UV/optical photons to start cascading until they reach MeV energies.

Chiara Bellenghi — TMEX2025

RENCONTRES DUVIETNAM

An <u>incomplete</u> list of theoretical studies: Murase et al, ApJ (2022) Inoue et al, ApJ (2019) Mbarek et al, PRD (2024) Murase et al, PRL (2020) Fiorillo et al, ApJL (2024)

Population studies and hints of neutrino emission from similar sources

Non-jetted AGN and the diffuse flux SFB 1258

Potential contribution from the entire population

- Population synthesis from the CXB, dominated by non-jetted AGN.
- Assume NGC1068 X/v ratio as constant.

Assumptions to extract population behaviors from one source...

- Two populations of sources:
 - X-ray bright non-blazar AGN at ~1–10 TeV.
 - Blazars @ PeV and beyond.

RENCONTRES DUVIETNAM

Chiara Bellenghi — TMEX2025

Other IceCube results

Hints to a population of non-jetted AGN

2.9σ excess from NGC 4151, X-ray-bright Seyfert on <u>arXiv</u>, submitted to ApJ

2.7σ excess from a list of soft X-ray AGN on *arXiv*, submitted to ApJ

Searching for neutrino sources with IceCube

The IceCube Neutrino Observatory

- A km³ of antarctic ice at a depth of ~1.5 km.
- 86 strings instrumented with 5160 optical modules.
- Detects the Cherenkov light emitted by secondary charged particles produced in neutrino interactions with the ice nuclei.
- Reconstruct the parent neutrino properties from the deposited light pattern: direction and energy.
- Energies from ~100 GeV to several PeV.

RENCONTRES DUVIETNAM

Chiara Bellenghi — TMEX2025

Maximum likelihood ratios

RENCONTRES DUVIETNAM

Spatial clustering of events above the background

Chiara Bellenghi — TMEX2025

Maximum likelihood ratios

Spatial clustering of events above the background

Chiara Bellenghi — TMEX2025

RENCONTRES DUVIETNAM

Maximum likelihood ratios

Spatial clustering of events above the background

Chiara Bellenghi — TMEX2025

RENCONTRES DUVIETNAM

Maximum likelihood ratios

Background PDF

$$f_b(x_i | \theta_b)$$

Latest results

More sources like NGC 1068?

New test on ~50% more data

- New selection of candidate sources triggered by:
 - observation of neutrinos from NGC 1068,
 - its X-ray brightness.
- Selected the 47 brightest Seyfert galaxies in 20-50 keV from the BASS catalog (Swift/BAT mission).
 - Effectively retains nearby, non-blazar AGN with an especially bright corona.
- Tested for neutrino emission singularly and as a collection of objects.
- <u>Re-test of NGC 1068 as well.</u>

RENCONTRES DUVIETNAM

Chiara Bellenghi — TMEX2025

- 13 years of track-like events (angular resolution
 < 1° at E > 1TeV) from the northern sky.
- **12 years of full detector** configuration with
 ~99% detector uptime + **1 year of data taken** with **79 strings**.
- ~1M events between 100 GeV and ~6 PeV.

NGC 1068 — Re-measurement

Still the most significant extragalactic source

- Look for neutrino sources from a pre-defined list of objects.
- Selected **110 gamma-ray** emitters.

NGC 1068 — Re-measurement

Still the most significant extragalactic source

- Most significant emission at **4σ**.
- 0.04° away from the hottest spot (previously 0.11° but same within stats).

NGC 1068 — Re-measurement

- Flux compatible with previous measurements within 1σ (stat.)
- The energy spectrum shifts to lower energies. Close to the lower energy boundary of the sample.

 $^{-2} \mathrm{s}^{-1}$

 1 cm^{-1}

Chiara Bellenghi TMEX2025

Cumulative excess from X-ray-bright AGN

Binomial test: what's the background probability of observing k sources out of N with a local significance above a certain threshold?

Source

- 6

10.0

9.5

9.0

8.5

8.0

347

 $\approx v_{\mu}$ Best-Fit

NGC 4992

198

13.0

Declination [deg]

10.5

41

40

NGC 1068

Declination [deg]

1.0

0.5 ·

0.0

-0.5

-1.0

42

Mrk 1498 53.0 -52.5 52.0 51.5 51.0 50.5 248 247 246

197

Cumulative excess

- 6 10.0 Declination [deg] 1.09.5 0.5 -9.0 0.0 from X-ray-bright AGN 8.5 -0.5 8.0 -1.042 41 40 347 346 345 **Binomial test**: what's the background probability of CGCG 420-015 Cygnus A 5.5 42.0 Declination [ded] - 3 observing k sources out of N with a local 41.5 41.0 significance above a certain threshold? 40.5 40.0

42

43

44

 $\approx v_{\mu}$ Best-Fit

40.5

40.0

39.5

39.0

NGC 4151

NGC 4992 Mrk 1498 NGC 1194 **3.3σ significance (post-trial). Highest evidence for a** group of sources so far.

300

299

39.5

301

Source

NGC 7469

73

74

72

0

NGC 1068

Back to the population

And our simplified assumptions

- NGC7469 already challenges our **simple assumption** that X-ray-bright non-blazar AGN and blazars are well separated in the energy spectrum.
- The X/v ratios not constant. anchoring the population to NGC1068's ratio oversimplifies reality.
- Update to the paper as soon as the IceCube paper is published — WIP.

Conclusion: a paradigm shift

From gamma rays to X-rays as neutrino tracers in AGN

- Neutrinos from the blazar TXS 0506+056 —> y-rays and neutrinos correlated in observations.
- Neutrinos from NGC 1068 —> γ-ray-obscured AGN that is X-ray bright.
- Additional excesses from X-ray-bright, non-blazar, AGN.
 - Recently, **binomial evidence at 3.3σ from a population of hard X-ray AGN**.
- Recent studies challenge the neutrino $-\gamma$ -ray correlation for blazars, speculating that neutrinos are produced in the AGN core, while gamma-rays come from the jet (<u>https://arxiv.org/abs/2411.14598</u>).
- A planetary neutrino monitoring system with IceCube, KM3NeT, P-ONE, GVD, Trident, ... will provide the additional sensitivity we need to confirm or discard the evidence provided by IceCube.

Chiara Bellenghi — TMEX2025

RENCONTRES DUVIETNAM

