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What we know and don’t know
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The dark sector might be very complicated

QCD Axiions

See e.g. 1907.06485




The “WIMP miracle”

* Get correct thermal relic abundance for DM with weak annihilation cross-section and mass ~100 GeV

1 ms X q
Qx o — ~ ——
(ov) Iy  x 3

* Note: Need to measure (ov) to rule out WIMP hypothesis



Making a WIMP theory

* Many theoretical options exist

* Bottom up approach: simply add particles to SM by hand, stabilise with a Z, symmetry

: See e.g.
e.g. Scalar singlet DM 1907.06485
1 1 1 1 1808.10465,
L= —pu2S*+ - M\psS?IH|* + = XsS* + 20,,50"S. 1705.07931,
2 2 4 2 1512.06458
* Top down approach: take a BSM model and exploit particles with the right properties See e.g
e.g. supersymmetric models, universal extra dimensions, little Higgs, some composite ggggggggg
Higgs theories, etc 1809.02097.
1705.07917,
1705.07935




WIMP theories should show up In lots of places

. accelerators (LHC and previous, plus intensity frontier)
. measurements of the magnetic moment of the muon

. beam dump/fixed target

. electroweak precision tests

. dark matter direct detection experiments

. searches for antimatter in cosmic rays

. nuclear cosmic ray ratios

. radio astronomy data

. effects of dark matter on reionisation, recombination and helioseismology
. the observed dark matter cosmological abundance

. neutrino masses and mixings

o Indirect searches



How to test BSM physics models

* Correct answer Is to use a global statistical fit
* Frequentist or Bayesian methods available
* Calculate a combined likelihood.:

L = ﬁcolliderEDMﬁﬂavorﬁEWPO c e

Model comparison

Given a set of models, which is the best
description of the data, and how much
better is it?

(Model X is now worse than model Y)




The dream

» Global fit results

* A general global fit tool requires some very tricky innovations:

- calculations are not allowed to know about Lagrangian parameters — how do you do that?

- how do you make an easy interface for tying existing code together?

- how do you store parameters in a scale independent way, but reintroduce scales in
calculations?

- how do you make LHC constraints model independent?

- how do you make astrophysical constraints model independent?

- how do we do all of this fast enough to get convergence within the age of the universe?



GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org github.com/GambitBSM EPJC77 (2017) 784 arXiv:1705.07908

* Extensive model database, beyond SUSY

* Fast definition of new datasets, theories

* Extensive observable/data libraries

* Plug&play scanning/physics/likelihood pack:

* Various statistical options
(frequentist /Bayesian)

* Fast LHC likelihood calculator

* Massively parallel

* Fully open-source

) Recent collaborators: V Ananyev, P Athron, N Avis-Kozar, C
Members of: ATLAS, Belle-ll, CLiC, CMS, Baldzs, A Beniwal, LL Braseth, T Bringmann, A Buckley, J
CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON Butterworth, JE Camargo-Molina, C Chang, J Cornell, M

Authors of: BubbleProfiler, Capt'n General, Contur, Danninger, A Fowlie, T Gonzalo, W Handley, S Hoof, A Jueid, F

. . Kahlhoefer, A Kvellestad, M Lecroq, C Lin, M Lucente, FN
DarkAges, DarksUsh, DDCale, DrectDM, Diver, Easy canHEE, Mahmoudi, DJE Marsh, G Martinez, H Pacey, MT Prim, T Procter,

BxaCLASS, FlexibleSUSY, gamlike, GM2Calc, HEFLIke, F Rajec, A Raklev, R Ruiz, A Scaffidi, P Scott, W Shorrock, C Sierra,

IsaTools, MARTY, nulLike, PhaseTracer, PolyChord, Rivet, * A :
SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, WIMPSim > 0Ceh f o1, | Fan den Abeele, & Vincent, M White, A

70+ participants in many experiments and numerous major theory codes



GAMBIT code structure

mi—b Core L= ScannerBit
} }

Physics modules Scanners

SpecBit DecayBit PrecisionBit Diver, PolyChord, MultiNest,
TWalk, Minuit, jswarm, emcee,

ColliderBit DarkBit FlavBit ultranest, scipy.optimiza, ...

NeutrinoBit CosmoBit

Backends

CaptnGeneral, DarkSUSY, DDCalc, FeynHiggs,
FlexibleSUSY, gamLike, gm2calc, HEPLike,
HiggsBounds, HiggsSignals, MicrOmegas, nulike,
Pythia, SPheno, SUSYHD, SUSYHIT, Superlso,
Vevacious, MontePython, CLASS, AlterBBN, ...




Astro limits: the problem

WIMP-nucleon cross section (cmz)
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Reality Is something Iike this
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DarkBit

DarkBit Module

MSSM/SingletDM

Y

Process Catalog

/

Nucleon couplings

Gamma/Nu yields

\/

Weft

X

Boltzmann solver

Y

InL indirect

InL relic

InL direct

AN TSN

Backends

NulLike
IceCube

GamlLike
GC, dwarfs

DDcalc
Xenon, LUX

* Event level neutrino telescope
and gamma ray likelihoods!

* First principles treatment of
direct search limits - easily
extendable to non-trivial
operators

* Very large range of experiments
included (includes future, e.g.
CTA)



GAMBIT status

* GAMBIT was released as an open source public tool in
2017

GAMBIT: The Global and Modular Beyond-the-Standard-
Model Inference Tool

The GAMBIT Collaboration: First Author*!, Second Author™?

.................

* Lots of physics studies performed so far (supersymmetry,
DM effective field theory and simplified models, axions,
neutrino physics, flavour physics)

* New cosmology module added in 2021

See https://gambitbsm.org/ for more info, all samples are
available via Zenodo

When supercomputers go over to the dark side

"~ Super easy version: GAMBIT light
https://github.com/GambitBSM/gambit_light 1.0




A very general approach to DM

L= Lom + Lint + % (60 — my) x Assume Dirac fermion gauge-singlet

{7y s o apy ea
Ql - 127 ( )C ; C;w d DM
(.
Qg?] — 5 (Y?:TEX)GQ,!W(—WW : ‘
82 Lom """+ Note EFTs differ below and above EW
oy =— T 5 QA Fva
Lint Zj Ad—1 Za QY = g )G Glors scale, and are matched at that scale
; O(?j _ (1’_:, 5% (ﬂu,uu(m ; . .

Qi = gr (Xi1sX) #v7 e+ Ignore dim-6 operators with lepton

Q: . = (xux)@"q), Q") = my(xx)(daq) interactions, also ignore operators
6 g o , - :
0 = (X5 ) (@ q) 0 = my(xivsx)(@a) with products of DM and Higgs
6 9 ) currents above EW scale
Q3 . = (XVuX) @ 759) , Q7 o = my(XX)(Tivs9)
§] o o). . .
0 = (X1 X) @ 159) Qy) = my(Xivsx)(@isq) * Drop additional dim-7 operators with
B B derivatives (redundant information)
Q.4 = Mq(Xo"" x)(qourq) »
7 Y L
QED),Q = T-rtq(X‘f'Jj' 'EX)(QJHMQ)



Scan detalils / constraints

* Have used differential evolution to scan over up to 24 parameters (DM mass, new
physics scale, 14 Wilson coefficients, 8 nuisance parameters)

LHC CMB INDIRECT DM
* New implementation of Madgraph- || * Relic abundance constraint from | * Automated calculation of cross-
derived monojet simulations Planck (2018). Separate scans sections and vy-ray spectra using
* CMS and very recent ATLAS data cover cases where a) fermion is GUM
* Include interference effects all of DM, b) fermion DM is a | * Fermi-LAT dwarf spheroidal limits
DIRECT DM subcomponent plus CTA projections

* Planck constraints on energy |* Solar capture constraints using
injection effects on the Capt'n General plus Icecube data
recombination history (also from
Planck)

* Fully-automated RG evolution from
A to low energies + matching to
non-relativistic operators

* Data from XenonlT, LUX (2016),
PandaX (2016+2017) , CDMSLite,
CRESST-Il, CRESST-Ill, PICO-60
(2017+2019), DarkSide-50

* Include astrophysical and nuclear

.
o~ 1 g

uncertainties




Results: DIm-6 scans

Cannot saturate relic

density due to indirect and ,,

direct DM search
constraints (but if DM is a
subcomponent, these
constraints are
suppressed)

LHC constraints
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Results: Dim-6 scans (future projections)

d = 6, capped Lruyc (hard cut-off), f, <1
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Global fits of simplified models for dark matter with GAMBIT

L Sealar and fermionic models with s-channel vector mediators
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A guestion | get asked a lot by
astrophysicists

* “We keep hearing that the lightest neutralino is a good dark matter candidate”

* “You've spent almost a decade not seeing supersymmetry at the LHC”

* “What are the LHC constraints on lightest neutralino dark matter?”



Supersymmetry

Spin 1/2 Lo Spin O
quarks < ] J squarks <
r J J - >
| * The lightest
leptons § sleptons { .
neutralino is a

natural dark
matter candidate,
and is the subject
of most studies
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How the MSSM might appear...

, " "
neutralinos 1/2 -1 B W° H, Hy Xi Xo X3 X4
charginos 1/2 -1 W+ Hf H; Xi X

\_ .

Source: Anders
Kvellestad




LHC constraints on SUSY (in 2017)

* We found no general constraint on the

MSSM EW sector from the LHC in this o 1

case, and we also explained why (the 100 _Zm_< f

searches are over-optimised on specific 1 2

simplified SUSY models) S an 1. 2
* New results are coming very soon, and <) 1 -

the parameter space is starting to look = 200 Ros ™

more constrained... )
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Eur.Phys.J.C 79 (2019) 5, 395



Opportunities

* We have mostly used GAMBIT so far to explore particle physics theories

* There are many astrophysics problems that could be tackled, e.qg.
* - consistent global fits of astrophysical models with multimessenger observations
* - models where particle processes interact with astrophysics (e.g. see talk on
cosmic ray-WIMP scattering)

Would love to chat with people interested in
developing new likelihoods or performing “pure
astrophysics” GAMBIT studies!




Summary

* GAMBIT is an excellent tool for particle astrophysics studies

* Can currently handle constraints on generic theories of particle physics using a wide
range of cosmology, astrophysics and particle physics data

* Many new results to come within the next few months (new papers on SUSY, neutrino
physics and flavour physics are in the final stages of preparation)

Always looking for new collaborators (PhD, post-doc, junior, senior, exp, theory,
pheno, whatever) ... chat to me at coffee or email martin.white @adelaide.edu.au
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