

Precise measurements with quantum sensors based on atom interferometry: an opportunity for the geosciences

Arnaud Landragin

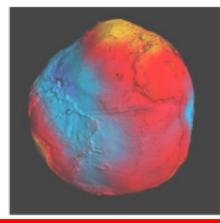
Laboratoire Temps Espace Paris Observatory

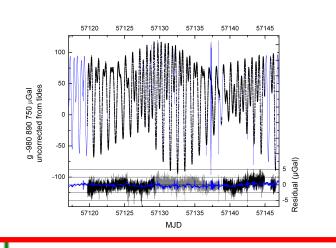
October the 8th, 2025

Applications of accurate inertial sensors

Inertial navigation

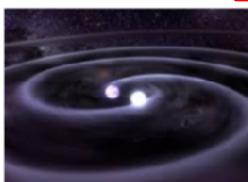
- Onboard accelerometers, gyroscopes and a clock
- → planes, satellites, submarines, ...


bias ~ 10⁻⁵ m.s⁻²


 \downarrow

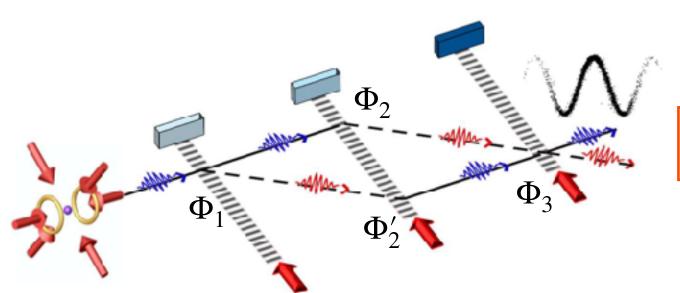
Drift in position ~ 100 m after one hour of flight

Geophysics


- Determination of the geoid
- Study of the underground
- Time variation

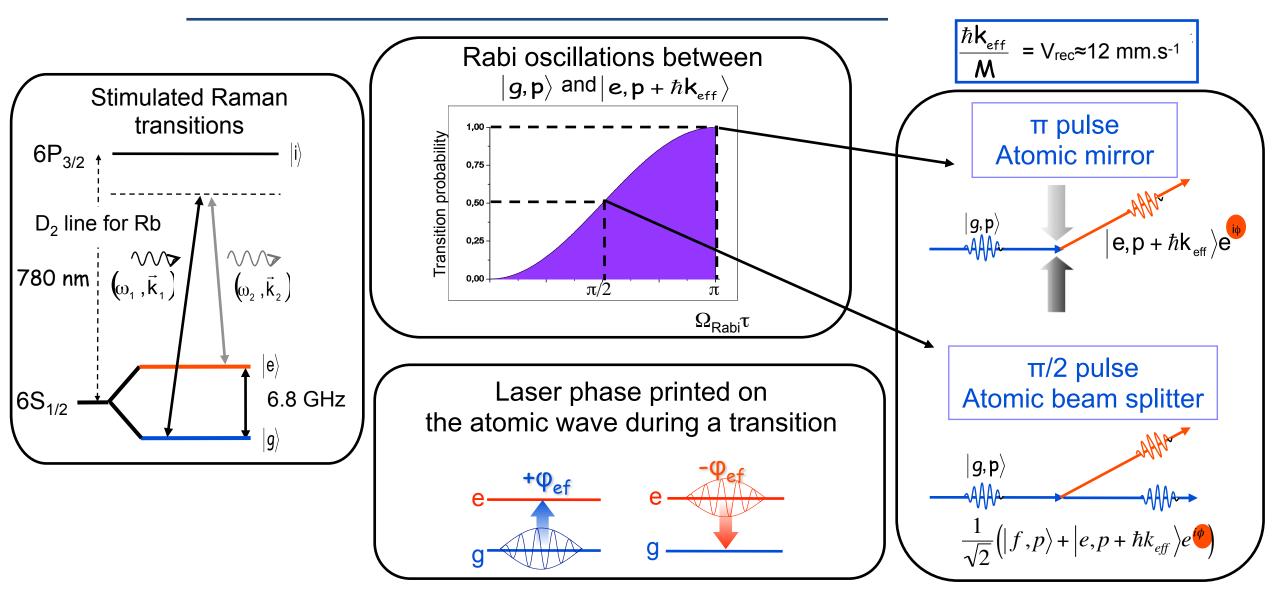
Fundamental physics

- test of the equivalence principle
- detection of gravitational waves
- measurement of G, h/M ...



Required sensitivity: $\sim 10^{-15} \text{ m.s}^{-2} \text{ at } f_{GW}$ ($\sim 1 \text{ Hz for example}$)

Two arm atom interferometer: accuracy and reproducibility


- Interference of de Brooglie waves
- Example of a 3 pulses interferometer
- Atom wave-packets diffracted by laser pulses
- Most of the inertial sensors used two photon Raman transitions

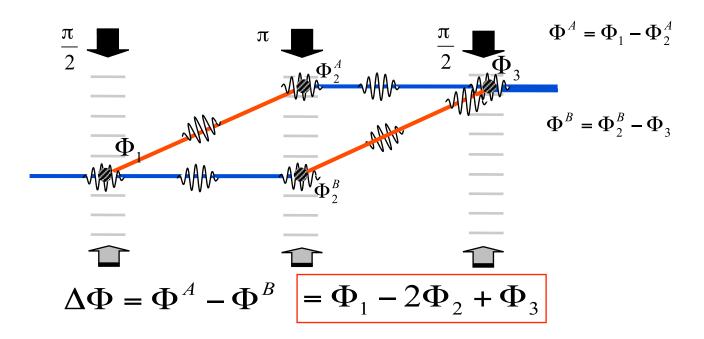
Δφ: difference of accumulated phase shift along the **two arms** interferences

$$P_1 = \frac{1}{2}(1 + \cos \Delta \Phi)$$

Wave-packet manipulation in alkaline atom

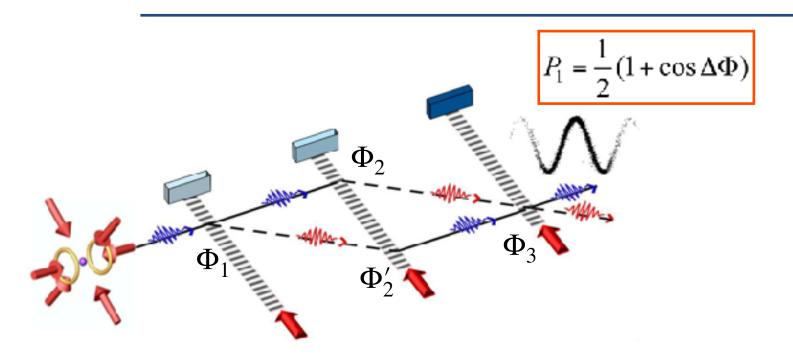
Interferometer Phase shift

Phase shift contributions along the perturbed trajectories:


Laser: at center of the wave packet $\phi_i = \mathbf{k} \cdot \mathbf{r}_i + \phi_I$

(for acc, gradient and rotation...)

Action: Propagation of the atomic wave


Ch.J. Bordé, Metrologia 39, 435-463 (2002)

Overlapping at exit of the interferometer

Relative displacements of the referential frame of the center of mass of the atoms / laser

Two arm atom interferometer: accuracy and reproducibility

Relative displacements of the referential frame of the center of mass of the atoms / laser

Δφ: difference of accumulated phase shift along the **two arms** interferences

$$\Delta \Phi = \Phi_1 - (\Phi_2' + \Phi_2) + \Phi_3$$

acceleration
$$\Delta \phi = \overbrace{k_{eff}}^{\text{acceleration}} \overrightarrow{a} T^2$$

Rotation $\Delta \Phi = -2 \left(\vec{k}_{eff} \right) \wedge \vec{V} \left(\vec{T}^2 \right) \vec{\Omega}$

Key advantages

- $_{\odot}$ Depends on frequency (k_{eff}) and on time (T) and \Rightarrow SI traceable, accurate, bias free
- Benefit from cold atoms :
 - o scales as T²
 - control of the velocity of the atoms

Atom interferometer sequence

Extinction of the trap

Laser 1

Bring two lasers in a co-propagating way and retroreflect them on a mirror

$$\pi/2$$

$$z(0) = 0$$

$$\overline{z(T)} = \frac{1}{2}gT^2$$

$$\pi/2$$
 $\overline{\longrightarrow}$ $z(2T) = 2gT^2$

Vertical interferometer ⇒ Free fall along the equiphase planes

$$\Delta\Phi_{\rm int} = -\vec{k}_{\it eff}\,\vec{g}\,T^2 + \delta\Phi_{\it noise} + \delta\Phi_{\it sys}$$

Position of the equiphases defined by the mirror position $\alpha (z_1 - 2 z_{2+} z_3)$

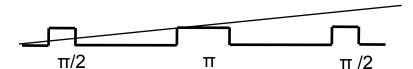
Detection

Laser 2

measure of the relative displacement atoms/mirror

atomic measurement

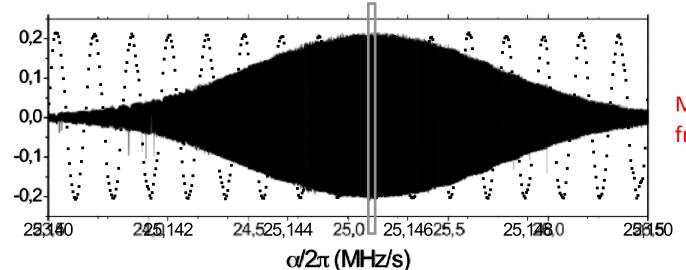
Meassurement of g


Free fall → Doppler shift of the resonance condition of the Raman transition

$$\omega_{1} - \omega_{2} = G + \omega_{R} + \omega_{D} = G + \frac{\hbar k_{eff}^{2}}{2m} + \underbrace{\vec{k}_{eff} \times \vec{p}}_{m} \longrightarrow \delta(\vec{v}) = \overrightarrow{k_{eff}} \cdot \vec{v} = \overrightarrow{k_{eff}} \cdot (\vec{g} t + \overrightarrow{v_{0}})$$

Laser 1

**

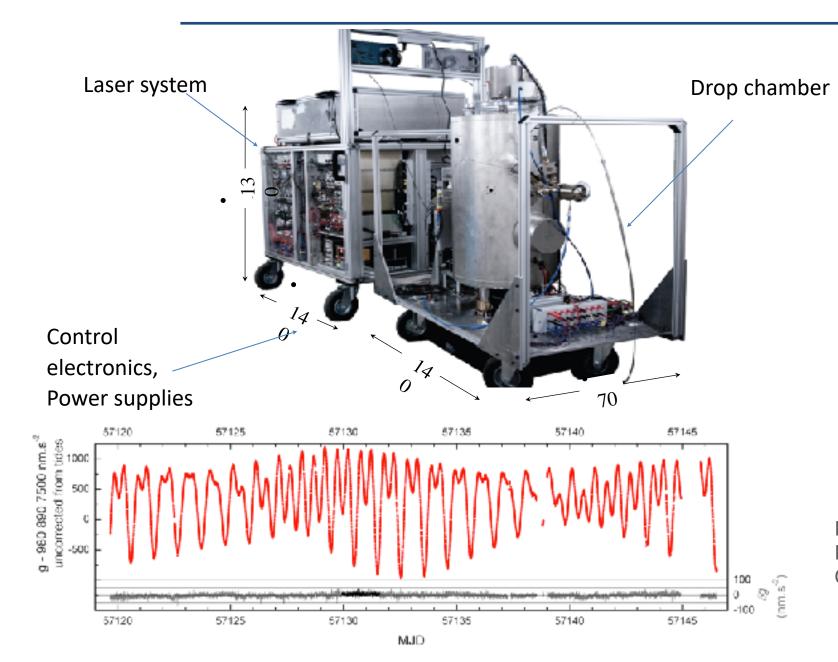


Ramping of the frequency difference to stay on resonance:

$$\Delta \Phi = k_{\text{eff}} \cdot g \cdot T^2 - \alpha T^2$$

$$g = \frac{a_0}{k_{eff}}$$

Scan of the slope of the frequency ramp:



Center fringe: independent of T, of pulse durations...

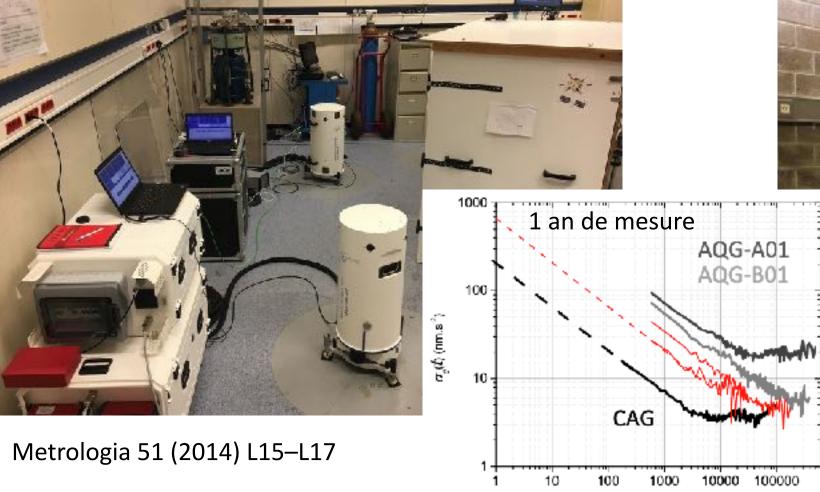
Measure of g => frequency measurement accuracy

Laser 2

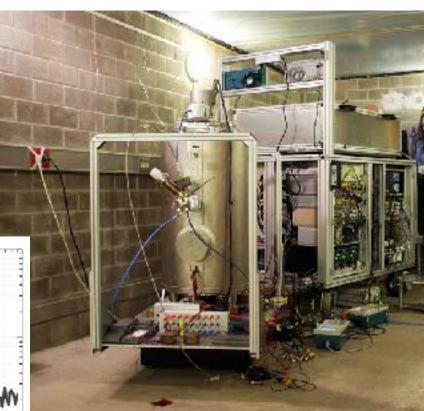
The LTE gravimeter

Performances

Short term stability
57 nm/s² @ 1s
Long term stability
< 1 nm/s²

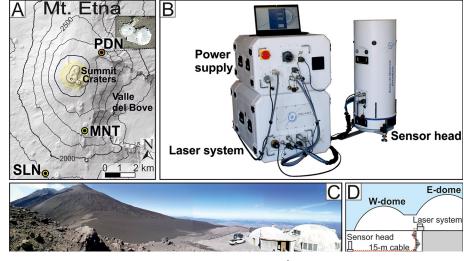

Better than the reference "classical" instrument = corner-cube gravimeter

Accuracy 20 nm/s²

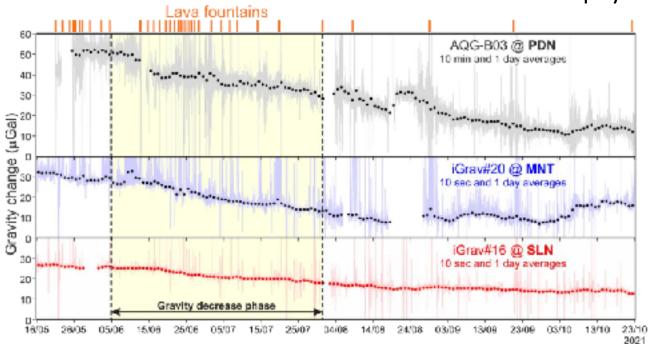

New Journal of Physics 13, 065025 (2011) New J. Phys. 20, 113041 (2018) Optics Express 33, 18843-18854 (2025)

Metrology with the gravimeter

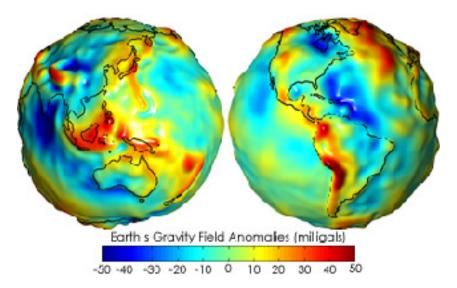
Comparison between atomic gravimeters and others, calibration of a superconductor gravimeter



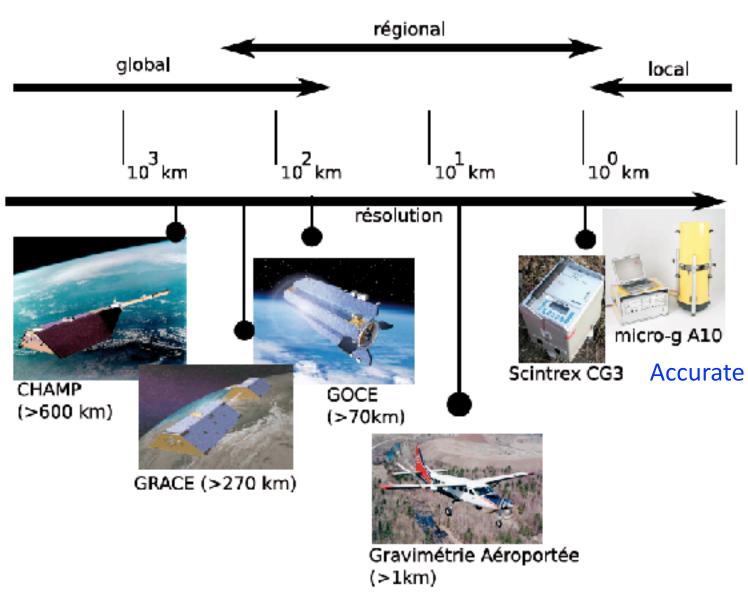
Laboratory and on filed gravimeter
Underground laboratory in Luxembourg


Example of application: vulcanology

- Production of compact gravimeters for in lab and on-field operation (Exail company)
- Targeted field of applications: geosciences
- Geodesy, hydrology, vulcanology ...

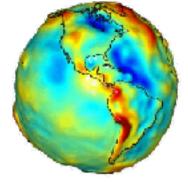

Atom gravimeter on the Mount Etna

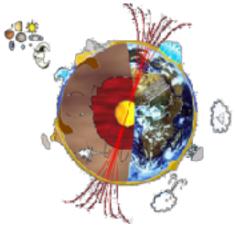
Geophysical Research Letters (2022), 10.1029/2022GL097814



Measurements of gravity field at different length scales with classical sensors

Relative apparatus: but no direct accuracy


Interest of quantum sensor for geophysics: accuracy

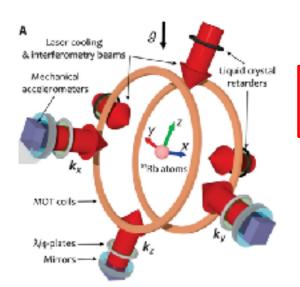

- Geodesy context: global and dynamic models and reference frames (United Nations Resolution A/RE/69/266)
 - Climate change: sea level, ice melt, hydrology, sediment mass redistribution...
 - Natural disaster management: vulcanology, seismology...
- Gravity field at all spatial scales: => 4D modeling of the global Earth system
 - Ground gradiometry: field derivative => very small scales, mobile measurements
 - Ground gravimetry: gravity field
 - Ground optical clocks (chronometric geodesy): gravitational potential => intermediate scales
 - On-board accelerometry and gradiometry: wide ground coverage => intermediate scales
 - Spatial atomic accelerometry/gradiometry: very large scales
 - Ground gyrometry: additional information, seismology

On board gravity measurements: boats and planes

- Development of a compact gravimeter for marine gravimetry by ONERA
- Measurement campaigns on the Beautemps-Beaupré (French Navy)

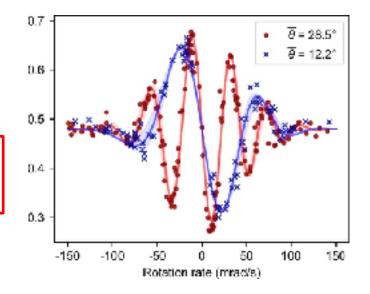
KSS32 relative Marine Gravimeter Cold (Bodenseewerk)

Cold Atom Gravimeter (Onera)


- Better performance for gravity mapping with the absolute atom gravimeter
- Suppression of calibration errors and drift corrections
- ----
- Gain of a factor 2-3 on the uncertainty (mGal level)

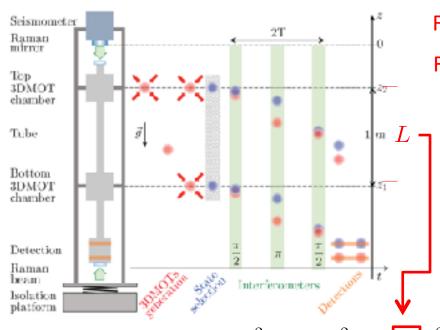
+ Campaign in plane: Iceland and Greenland

Y. Bidel et al., Absolute marine gravimetry with matter-wave interferometry, Nat. Comm. (2018) 9:627
T. E. Jensen et al.: Airborne gravimetry with quantum technology, Earth Syst. Sci. Data, 17, 1667–1684, 2025


Development for strapdown measurements

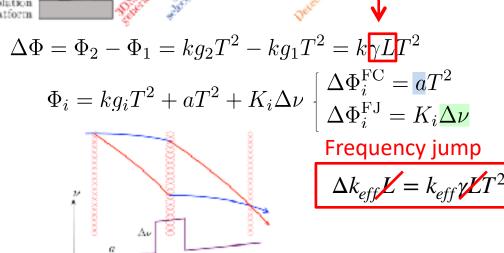
Application for large scale mapping on boat, plane ...: more compact, improved on the field operability Labcom iXAtom (LP2N-iXblue/Exail)

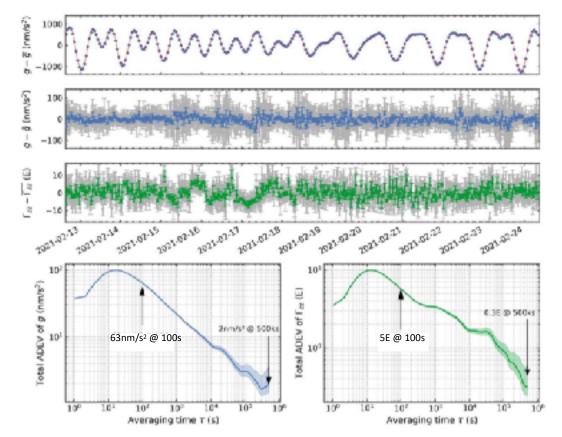
- Demonstration of the first quantum accelerometer triad (QuAT)
- Measures accelerations along three mutually orthogonal directions
- Long-term stability of 60 ng
- absolute magnitude accuracy below 10 μg
- S. Templier et al, Science Advances Vol 8, Issue 45 (2022)


Real-time compensation for rotation: up to 30° et 14 °/s

d'Armagnac de Castanet et al., Nat Commun 15, 6406 (2024).

Dual Gravity-Gradiometry sensor

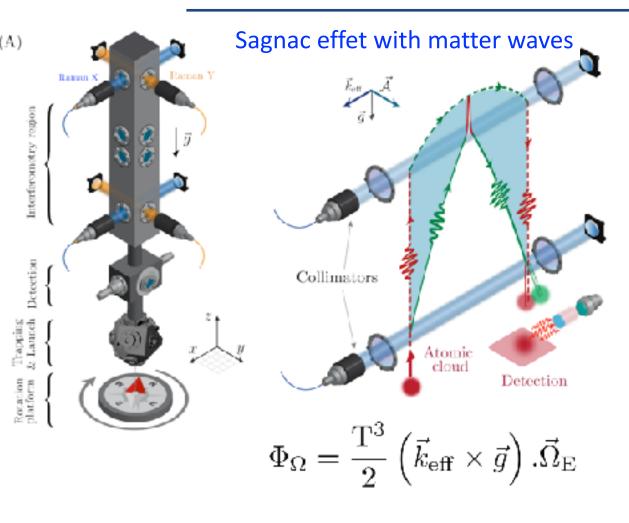

Frequency rampe between Raman lasers => g


Frequency jump of both Raman lasers => γ

$$g = a/k_{\text{eff}}$$

$$\Delta \nu_{\gamma} = -\gamma \frac{kT^2c}{8\pi}$$

Accurate both for gravity acceleration (at the mirror position) and the gradient, independent from the baseline



C. Janvier et al., Phys. Rev. A 105, 022801 (2022)

R. Caldani et al., Phys. Rev. A **99** 033601 (2019)

Atom gyroscope: rotational seismology

Applications in seismology

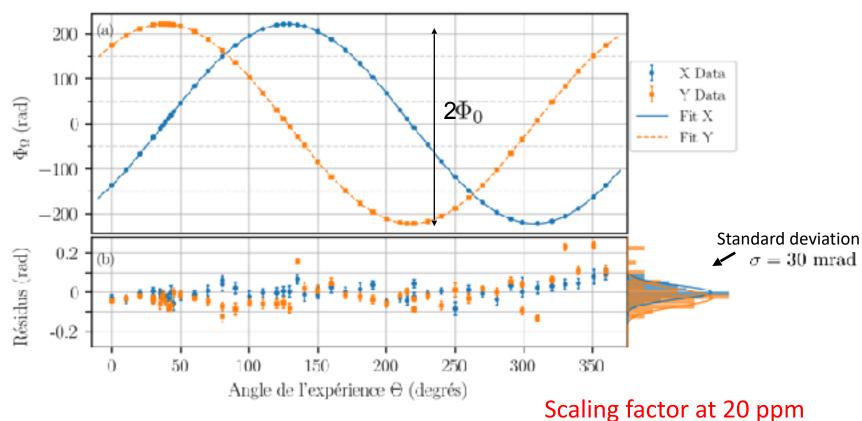
- Additional local information on earthquakes wave propagation
- Acceleration/rotation correlations
- Subsurface investigation, civil engineering, risk assessment

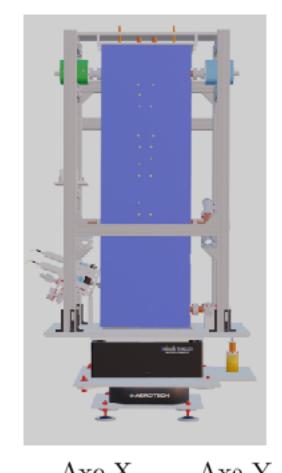
Main features

Very large area: 11 cm²

with $T_{int} = 800 \text{ ms}$

Zero dead time interrogation with interleaved measurements


Record stability: 0.3 nrad/s


and accuracy: scaling factor at 20 ppm

- D. Savoie et al, Science Advances 2018;4:eaau7948
- R. Gautier, et al, .Science Advances, Vol. 8, no. 23, eabn8009 (2022)

Sagnac effect measurement

Rotation over 360°: measurement on both X and Y axes

Sinusoidal fit for both axes: 16 times

$$\Phi_{\rm ajust}(\Theta) = B + \Phi_0 \cos(\Theta_0 - \Theta_N)$$

Amplitude: Sagnac effect

ррііі	Axe A	Axe i
Expected Sagnac phaseshift	221.5707(3) rad	221.5638(2) rad
Measured Sagnac 221.527(9) rad		221.561(8) rad

R. Gautier, et al, .Science Advances, Vol. 8, no. 23, eabn8009

Pushing the limits

Single interferometer at the standard quantum limited

$$\sigma_{\Phi} = \frac{1}{C\sqrt{N}}$$
 (atomic shot noise)

$$\Rightarrow \sigma_a = \frac{\sigma_{\Phi}}{k_{eff}T^2} = \frac{1}{C\sqrt{N}k_{eff}T^2}$$

To boost the sensitivity:

- Increase N and/or k_{eff} and/or T
- Below the SQL

CARIOQA: a pathfinder for geodesy mission

Demonstrator within the next decade of a space quantum accelerometer for geodesy applications -> demonstrate 10^{-10} m.s⁻² in 1s in space (for 2T = 2s)

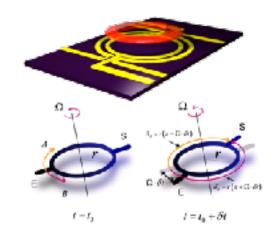
- Horizon Europe project
 16 partners from academia and industry
- https://carioqa-quantumpathfinder.eu/

- Two follow-on projects in HE (WP 2023-2024)
- CARIOQA-PHA: completed in 2024
- CARIOQA-PHB: Kickoff October 2025 (2Y)

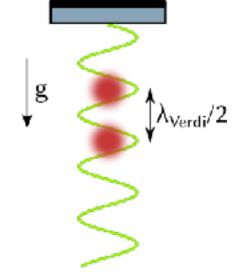
T. Lévèque, et al., Gravity Field Mapping Using Laser-Coupled Quantum Accelerometers in Space Journal of Geodesy 95, 15 (2021)

Beyond free falling atoms

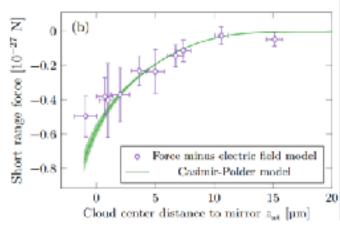
Advantages:


- Longer interaction times T >> 1 s possible
- Compact sensors
- Local probing at μm scale possible

Analogy with fiber optics:


- Guided architecture
- Trapped atom interferometry

Difficulty/novelty: control of the trapping potential


Magnetic Traps

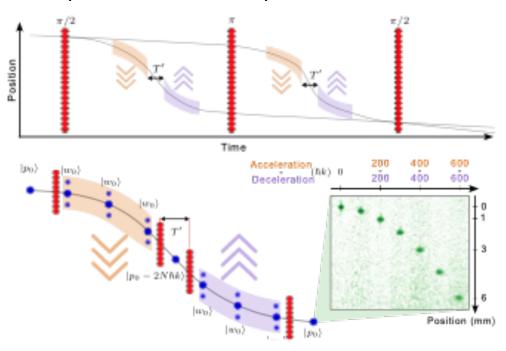
Optical Traps

- Short term stability
- 3.4 10⁻²⁸ N @ 1s
- Long term stability
- 4 10-30N (4 qN)

 Y. Balland, et al., Quectonewton local force sensor, Phys. Rev. Lett. 133, 113403 (2024)

Gravimeter – Gradiometer: next generation

Development of a dual sensor for gravity acceleration and gradient, based on Large Momentum tranfer and ultra-cold atoms

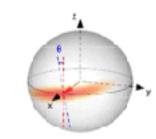


Aim of using 2 ultra-cold atomic sources with very large splitting

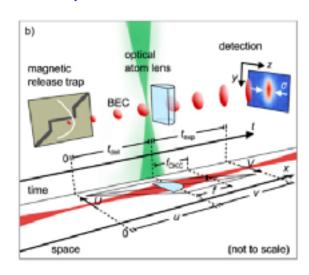
Bragg transition order N=3 : $\Delta p = 6\hbar k$ Quantum control: improve contrast x2

R. Caldani, et al., gradient, Phys. Rev. A 99, 033601 (2019)

- New methods for Large Momentum Transfer
- Optimal control + Floquet formalism



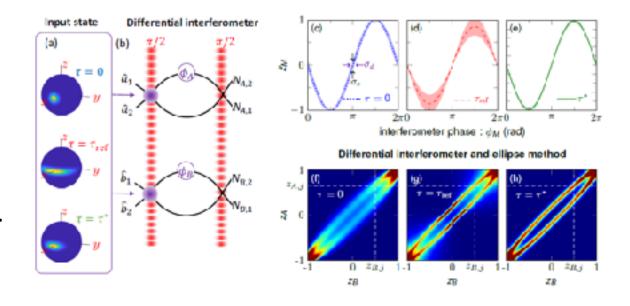
Record momentum splitting: $600 \, \hbar k$ record with alkaline LCAR Toulouse


- Béguin et al. Phys. Rev. Lett. 131, 143401 (2023).
- Rodzinka et al. Nat Commun 15, 10281 (2024).

Beating the quantum limit

SQL: Quantum Projection Noise $\Delta \phi = 1/\sqrt{N}$

Implementation in a free-fall interferometer: Use of matter-wave lensing



R. Corgier et al., Delta-Kick squeezing, PRL 127, 183401 (2021)

$$G = \Delta \phi_{SQL}/\Delta \phi \rightarrow \text{Up to 32 dB in } \Delta \theta^2$$

- Tacking care of the imperfections
- Demonstrate the usefulness: keeping the accuracy...

R. Corgier et al., Optimized squeezing for accurate differential sensing under large phase noise, 2025 Quantum Sci. Technol. 10 045016

Conclusions

- Main advantage: accuracy and reproducibility (use of laser for manipulation)
 - Scaling factor
 - Laser/atom interaction
 - Cold/ultra-cold atoms : control velocity
- Maturity of atom interferometry techniques for the development of inertial sensors
 - Performances comparable to, or overpass, classical technologies
 - Current efforts towards compactness and improved on the field operability
- Room for improvements and new systems (LMT, optimum quantum control, squeezing, trap atom interferometers ...)
- New fields of applications in geosciences: reservoir monitoring, exploration, civil engineering... and full 4D evolution monitoring.
 and as well fundamental physics, navigation.

Thank you

Thanks to colleagues of IACI team of LTE

Franck Pereira dos Santos

Carlos Garrido Alzar

Sébastien Merlet

Quentin Beaufils

Leonid Sidorenkov

Robin Corgier

Remi Geiger

https://syrte.obspm.fr/spip/science/iaci/

And collaborator in the QAFCA project of PERP-Q

LCAR (Toulouse)

Baptiste Allard, Alexandre Gauguet

LKB (Paris)

Pierre Cladé, Saïda Guellati

LP2N/iXatom (Bordeaux)

Baptiste Batelier

