100 Years of Quantum Physics, ICISE Quy Nhon (2025)

General Properties of Frustration-Free Quantum Many-Body Systems

TERNATIO Haruki Watanabe (University of Tokyo)

Rintaro Masaoka (U Tokyo)
Seishiro Ono (U Tokyo→RIKEN/HKUST→U Tokyo)
Shunsuke Sengoku (U Tokyo)
Tomohiro Soejima (Harvard→NYU/Flatiron)
Hoi Chun Po (HKUST)

Bosons/Spins

Lee-Katsura-HW, arXiv:2310.16881 (PRL 2024)

Masaoka-Soejima-HW, arXiv:2406.06414 (PRB 2025)

Masaoka-Soejima-HW, arXiv:2406.06415

Masaoka-Soejima-HW, arXiv:2502.09908 (J. Stat. Phys. 2025)

Fermions

Masaoka-Ono-Po-HW, arXiv:2503.12879

Ono-Masaoka-HW-Po, arXiv:2503.14312

Sengoku-Po-HW, arXiv:2505.01010 (PRB 2025)

Introduction & Motivation:

Two interesting models I recently found...

HW-Katsura-Lee, PRL (2024) Editors' Suggestions

• s=1 XXZ spin chain with four-spin interaction ($\Delta \neq 1$).

$$\hat{H}_i = -J(\hat{s}_i^x \hat{s}_{i+1}^x + \hat{s}_i^y \hat{s}_{i+1}^y + \Delta \hat{s}_i^z \hat{s}_{i+1}^z) + \frac{J}{\Delta} \left[1 - (1 - \Delta)(\hat{s}_i^z)^2 \right] \left[1 - (1 - \Delta)(\hat{s}_{i+1}^z)^2 \right]$$

G = SO(2): Spin rotation symmetry about z axis generated by $\hat{S}^z = \sum_{i=1}^{L} \hat{s}_i^z$.

HW-Katsura-Lee, PRL (2024) Editors' Suggestions

• s=1 XXZ spin chain with four-spin interaction ($\Delta \neq 1$).

$$\hat{H}_i = -J(\hat{s}_i^x \hat{s}_{i+1}^x + \hat{s}_i^y \hat{s}_{i+1}^y + \Delta \hat{s}_i^z \hat{s}_{i+1}^z) + \frac{J}{\Delta} \left[1 - (1 - \Delta)(\hat{s}_i^z)^2 \right] \left[1 - (1 - \Delta)(\hat{s}_{i+1}^z)^2 \right]$$

G = SO(2): Spin rotation symmetry about z axis generated by $\hat{S}^z = \sum_{i=1}^{L} \hat{s}_i^z$.

- Order parameter $\hat{\mathcal{O}} = \sum_{i=1}^{L} \hat{s}_{i}^{x}$. $[\hat{H}, \hat{\mathcal{O}}] \neq 0$ when $\Delta \neq 1$.
- Symmetry-breaking field: $\hat{H}(h) = \hat{H} h\hat{\mathcal{O}}$.
- $m(h) = \frac{\langle \hat{\mathcal{O}} \rangle}{V}$ for the ground state of $\hat{H}(h)$.
- Spontaneous symmetry breaking

$$\Leftrightarrow \lim_{h \to +0} \lim_{V \to \infty} m(h) \neq 0$$

HW-Katsura-Lee, PRL (2024) Editors' Suggestions

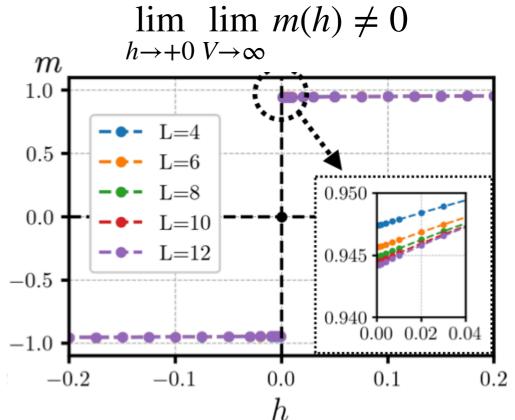
• s=1 XXZ spin chain with four-spin interaction ($\Delta \neq 1$).

$$\hat{H}_i = -J(\hat{s}_i^x \hat{s}_{i+1}^x + \hat{s}_i^y \hat{s}_{i+1}^y + \Delta \hat{s}_i^z \hat{s}_{i+1}^z) + \frac{J}{\Delta} \left[1 - (1 - \Delta)(\hat{s}_i^z)^2 \right] \left[1 - (1 - \Delta)(\hat{s}_{i+1}^z)^2 \right]$$

G = SO(2): Spin rotation symmetry about z axis generated by $\hat{S}^z = \sum_{i=1}^{\infty} \hat{s}_i^z$.

- Order parameter $\hat{\mathcal{O}} = \sum_{i=1}^{L} \hat{s}_{i}^{x}$. $[\hat{H}, \hat{\mathcal{O}}] \neq 0$ when $\Delta \neq 1$.
- Symmetry-breaking field: $\hat{H}(h) = \hat{H} h\hat{\mathcal{O}}$.
- $m(h) = \frac{\langle \hat{\mathcal{O}} \rangle}{V}$ for the ground state of $\hat{H}(h)$.
- Spontaneous symmetry breaking

$$\Leftrightarrow \lim_{h \to +0} \lim_{V \to \infty} m(h) \neq 0$$



HW-Katsura-Lee, PRL (2024) Editors' Suggestions

• s = 1 XXZ spin chain with four-spin interaction ($\Delta \neq 1$).

$$\hat{H}_i = -J(\hat{s}_i^x \hat{s}_{i+1}^x + \hat{s}_i^y \hat{s}_{i+1}^y + \Delta \hat{s}_i^z \hat{s}_{i+1}^z) + \frac{J}{\Delta} \left[1 - (1 - \Delta)(\hat{s}_i^z)^2 \right] \left[1 - (1 - \Delta)(\hat{s}_{i+1}^z)^2 \right]$$

G = SO(2): Spin rotation symmetry about z axis generated by $\hat{S}^z = \sum_{i=1}^{\infty} \hat{s}_i^z$.

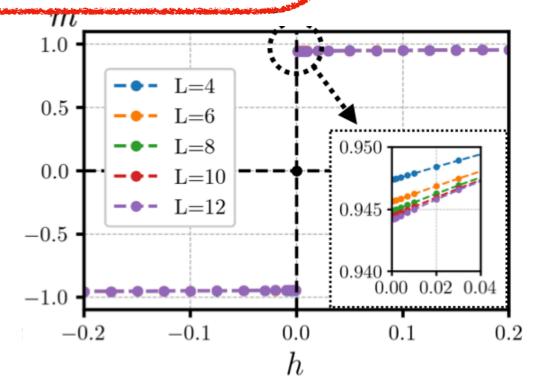
Order param

Somehow the spin-wave excitation of this model has quadratic dispersion $\omega_{\vec{k}} \propto k^2$ (like in Heisenberg ferromagnet)

 $h) \neq 0$

- Symmetry-breaking field: $\hat{H}(h) = \hat{H} h\hat{\mathcal{O}}$.
- $m(h) = \frac{\langle \hat{\mathcal{O}} \rangle}{V}$ for the ground state of $\hat{H}(h)$.
- Spontaneous symmetry breaking

$$\Leftrightarrow \lim_{h \to +0} \lim_{V \to \infty} m(h) \neq 0$$



Hohenberg-Mermin-Wagner theorem at T>0

Hohenberg-Mermin-Wagner (HMW) theorem:

Hohenberg (1967), Mermin-Wagner (1966)

Continuous symmetries cannot be broken at finite T in $d \leq 2$.

spatial dimension (not including time)

Hohenberg-Mermin-Wagner theorem at T>0

• Hohenberg-Mermin-Wagner (HMW) theorem:

Hohenberg (1967), Mermin-Wagner (1966)

Continuous symmetries cannot be broken at finite T in $d \leq 2$.

• Nambu-Goldstone (NG) theorem: Nambu (1960), Goldstone (1961)

Spontaneously broken continuous symmetry ⇒ Gapless excitations

Hohenberg-Mermin-Wagner theorem at T>0

Hohenberg-Mermin-Wagner (HMW) theorem:

Hohenberg (1967), Mermin-Wagner (1966)

Continuous symmetries cannot be broken at finite T in $d \leq 2$.

• Nambu-Goldstone (NG) theorem: Nambu (1960), Goldstone (1961)

Spontaneously broken continuous symmetry ⇒ Gapless excitations

- Proof of HMW theorem (by contradiction)
 - 1. Suppose a continuous symmetry is broken.
 - 2. NG theorem implies gapless excitations (Nambu-Goldstone bosons).
 - 3. Infrared divergence originating from NG bosons in $d \le 2$ destroys the order parameter.

Hohenberg-Mermin-Wagner theorem at T=0

• Hohenberg-Mermin-Wagner (HMW) "theorem" at T=0:

Hohenberg (1967), Mermin-Wagner (1966)

Continuous symmetries cannot be broken at finite T in $d \le 2$. T = 0 in $d \le 1$

Coleman (1973)

Nambu-Goldstone (NG) theorem: Nambu (1960), Goldstone (1961)

*Lorentz symmetry assumed

Spontaneously broken continuous symmetry ⇒ Gapless excitations

- Proof of HMW theorem (by contradiction)
 - 1. Suppose a continuous symmetry is broken.
 - 2. NG theorem implies gapless excitations (Nambu-Goldstone bosons).
 - 3. Infrared divergence originating from NG bosons in $d \le 2$ destroys the order parameter. $d \le 1$

Fourier transformation:
$$\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$$
, $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ ($\hat{\mathcal{O}} = [i\hat{Q}, \hat{X}]$)

Fourier transformation:
$$\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$$
, $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ ($\hat{\mathcal{O}} = [i\hat{Q},\hat{X}]$)

$$\frac{1}{V^2} \sum_{\vec{k}} \langle \hat{X}_{\vec{k}}^{\dagger} \hat{X}_{\vec{k}}^{\dagger} + \hat{X}_{\vec{k}}^{\dagger} \hat{X}_{\vec{k}} \rangle \geq \frac{1}{V} \sum_{\vec{k}} \frac{2T \left| \frac{1}{V} \langle [i\hat{Q}_{\vec{k}}^{\dagger}, \hat{X}_{\vec{k}}] \rangle \right|^2}{\frac{1}{V} \langle [[\hat{Q}_{\vec{k}}, \hat{H}], \hat{Q}_{\vec{k}}^{\dagger}] \rangle}$$

Fourier transformation:
$$\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$$
, $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ ($\hat{\mathcal{O}} = [i\hat{Q}, \hat{X}]$)

$$\frac{1}{V^{2}} \sum_{\vec{k}} \langle \hat{X}_{\vec{k}} \hat{X}_{\vec{k}}^{\dagger} + \hat{X}_{\vec{k}}^{\dagger} \hat{X}_{\vec{k}} \rangle \geq \frac{1}{V} \sum_{\vec{k}} \frac{2T \left| \frac{1}{V} \langle [i\hat{Q}_{\vec{k}}^{\dagger}, \hat{X}_{\vec{k}}] \rangle \right|^{2}}{\frac{1}{V} \langle [[\hat{Q}_{\vec{k}}, \hat{H}], \hat{Q}_{\vec{k}}^{\dagger}] \rangle}$$

$$O(1)$$

Fourier transformation:
$$\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$$
, $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ ($\hat{\mathcal{O}} = [i\hat{Q}, \hat{X}]$)

$$\frac{1}{V^{2}} \sum_{\vec{k}} \langle \hat{X}_{\vec{k}} \hat{X}_{\vec{k}}^{\dagger} + \hat{X}_{\vec{k}}^{\dagger} \hat{X}_{\vec{k}} \rangle \geq \frac{1}{V} \sum_{\vec{k}} \frac{2T \left(|\frac{1}{V} \langle [i\hat{Q}_{\vec{k}}^{\dagger}, \hat{X}_{\vec{k}}] \rangle |^{2} \right)}{\frac{1}{V} \langle [[\hat{Q}_{\vec{k}}, \hat{H}], \hat{Q}_{\vec{k}}^{\dagger}] \rangle}$$

Fourier transformation:
$$\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$$
, $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ ($\hat{\mathcal{O}} = [i\hat{Q},\hat{X}]$)

$$\frac{1}{V^{2}} \sum_{\vec{k}} \langle \hat{X}_{\vec{k}} \hat{X}_{\vec{k}}^{\dagger} + \hat{X}_{\vec{k}}^{\dagger} \hat{X}_{\vec{k}} \rangle \geq \frac{1}{V} \sum_{\vec{k}} \frac{2T \left(|\frac{1}{V} \langle [i\hat{Q}_{\vec{k}}^{\dagger}, \hat{X}_{\vec{k}}] \rangle |^{2}}{\frac{1}{V} \langle [[\hat{Q}_{\vec{k}}, \hat{H}], \hat{Q}_{\vec{k}}^{\dagger}] \rangle}$$

$$O(1) \qquad \simeq Ck^{2}$$

Fourier transformation:
$$\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$$
, $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ ($\hat{\mathcal{O}} = [i\hat{Q}, \hat{X}]$)

$$\frac{1}{V^{2}} \sum_{\vec{k}} \langle \hat{X}_{\vec{k}} \hat{X}_{\vec{k}}^{\dagger} + \hat{X}_{\vec{k}}^{\dagger} \hat{X}_{\vec{k}} \rangle \geq \frac{1}{V} \sum_{\vec{k}} \frac{2T \left(|\frac{1}{V} \langle [i\hat{Q}_{\vec{k}}^{\dagger}, \hat{X}_{\vec{k}}] \rangle |^{2}}{\frac{1}{V} \langle [[\hat{Q}_{\vec{k}}, \hat{H}], \hat{Q}_{\vec{k}}^{\dagger}] \rangle}$$

$$O(1) \qquad \simeq Ck^{2}$$

$$O(1) \ge \int \frac{d^d k}{(2\pi)^d} \frac{2T |m|^2}{Ck^2}$$

IR divergence in $d \le 2 \implies m = 0$ (i.e., no SSB)

Proof of HMW theorem for T=0 via Bogoliubov inequality Takada (1975)

Fourier transformation: $\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$, $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ ($\hat{\mathcal{O}} = [i\hat{Q}, \hat{X}]$)

$$\frac{\langle \hat{\mathcal{O}} \rangle}{V} = m$$

$$\frac{1}{V^{2}} \sum_{\vec{k}} \langle \hat{X}_{\vec{k}}^{\dagger} \hat{X}_{\vec{k}}^{\dagger} + \hat{X}_{\vec{k}}^{\dagger} \hat{X}_{\vec{k}} \rangle \geq \frac{1}{V} \sum_{\vec{k}} \frac{2T \left(|\frac{1}{V} \langle [i\hat{Q}_{\vec{k}}^{\dagger}, \hat{X}_{\vec{k}}] \rangle |^{2} \right)}{\frac{1}{V} \langle [[\hat{Q}_{\vec{k}}, \hat{H}], \hat{Q}_{\vec{k}}^{\dagger}] \rangle}$$

$$\approx Ck^{2}$$

$$O(1) \ge \int \frac{d^d k}{(2\pi)^d} \frac{2T |m|^2}{Ck^2}$$

IR divergence in $d \le 2 \implies m = 0$ (i.e., no SSB)

Proof of HMW theorem for T=0 via Bogoliubov inequality Takada (1975)

Fourier transformation: $\hat{Q}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{Q}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$, $\hat{X}_{\vec{k}} = \sum_{\vec{r} \in \Lambda} \hat{X}_{\vec{r}} e^{i\vec{k}\cdot\vec{r}}$ ($\hat{\mathcal{O}} = [i\hat{Q}, \hat{X}]$)

$$\frac{\omega_{\vec{k}} \simeq vk^{n}}{\frac{1}{V^{2}} \sum_{\vec{k}} \langle \hat{X}_{\vec{k}}^{\dagger} \hat{X}_{\vec{k}}^{\dagger} + \hat{X}_{\vec{k}}^{\dagger} \hat{X}_{\vec{k}} \rangle} \geq \frac{1}{V} \sum_{\vec{k}} \frac{2T \left(|\frac{1}{V} \langle [i\hat{Q}_{\vec{k}}^{\dagger}, \hat{X}_{\vec{k}}] \rangle |^{2}}{\frac{1}{V} \langle [[\hat{Q}_{\vec{k}}, \hat{H}], \hat{Q}_{\vec{k}}^{\dagger}] \rangle}$$

$$O(1) \qquad \qquad \simeq Ck^{2}$$

In our example n=2. SSB is allowed in d>0.

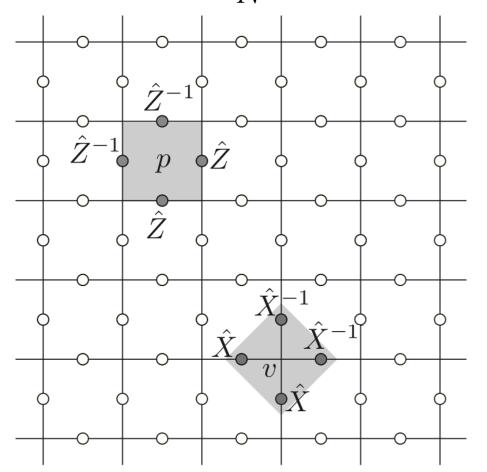
$$O(1) \ge \int \frac{d^d k}{(2\pi)^d} \frac{2T |m|^2}{Ck^2}$$

$$d \le 2 - n$$

IR divergence in $d \le 2 \implies m = 0$ (i.e., no SSB)

HW-Cheng-Fuji (2023)

Standard \mathbb{Z}_N toric code



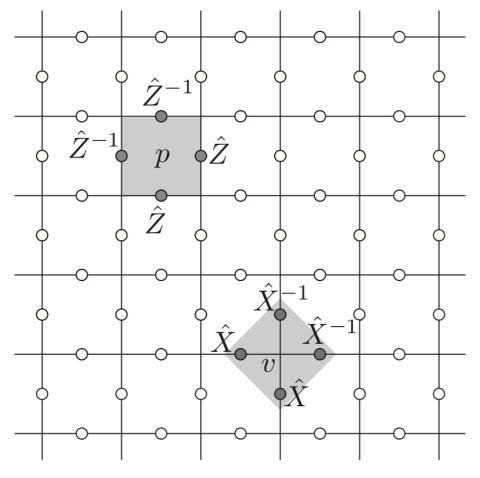
$$X = \begin{pmatrix} 1 & & & 1 \\ 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \quad Z = \begin{pmatrix} 1 & & & \\ & \omega & & \\ & & & \omega^2 & \\ & & & & \ddots & \\ & & & & \omega^{N-1} \end{pmatrix}$$

$$ZX = \omega XZ = \begin{pmatrix} \omega & & & 1 \\ \omega & & & \\ & \omega^2 & & \\ & \ddots & & \\ & & \omega^{N-1} \end{pmatrix} \qquad Z^N = X^N = 1$$

- Topological degeneracy: $N_{\rm deg}=N^2$ under PBC
- Topological entanglement entropy: $S_{\text{top}} = -\log N \neq 0$
- Anyonic excitations

HW-Cheng-Fuji (2023)

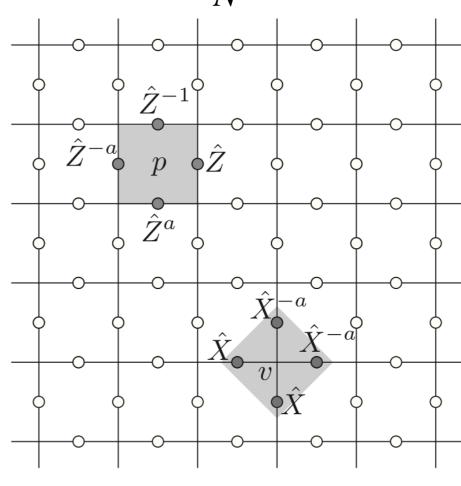
Standard \mathbb{Z}_N toric code



Modified \mathbb{Z}_N toric code

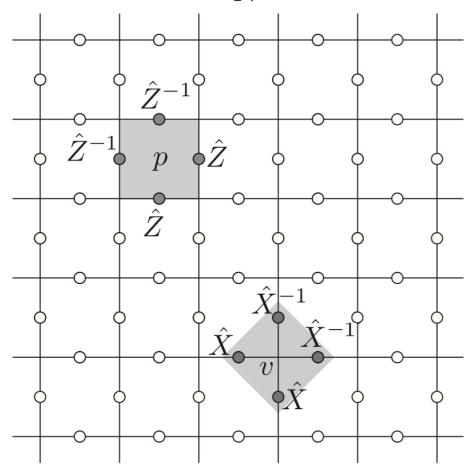
Integer parameter

 \boldsymbol{a}



HW-Cheng-Fuji (2023)

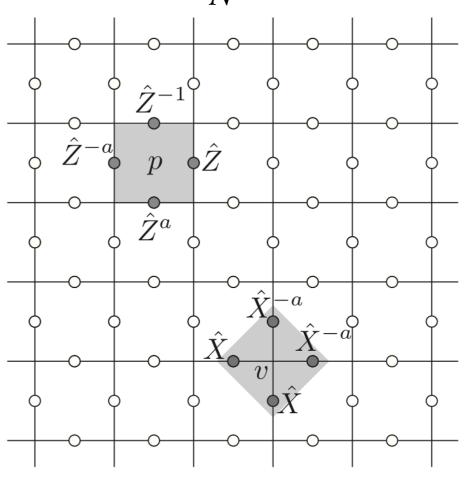
Standard \mathbb{Z}_N toric code



Modified \mathbb{Z}_N toric code

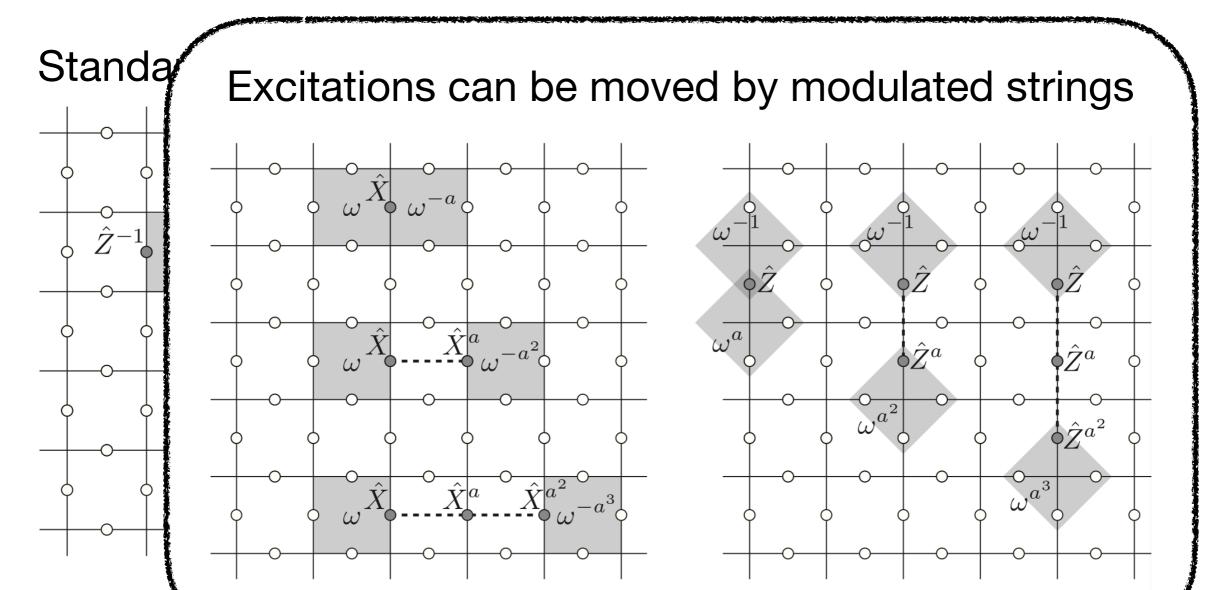
Integer parameter

a



- $N_{\text{deg}} = N^2$ under PBC
- Topologically-ordered $S_{\text{top}} = -\log N \neq 0$
- $N_{\text{deg}} = [\gcd(a^{L_1} 1, a^{L_2} 1, N)]^2 \rightarrow \text{can be 1!}$ e.g. N = 11, a = 2, $L_{1,2} \neq 0 \mod 10$
- $S_{\text{top}} \neq 0$ unless a is a multiple of rad(N)

HW-Cheng-Fuji (2023)



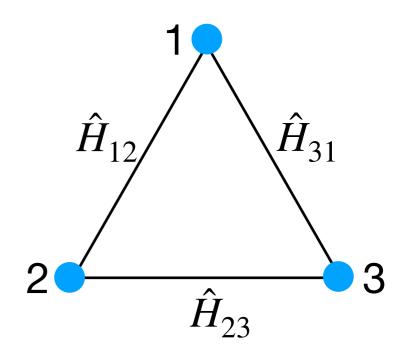
- N_{deg}
- Topologically-ordered

$$S_{\text{top}} = -\log N \neq 0$$

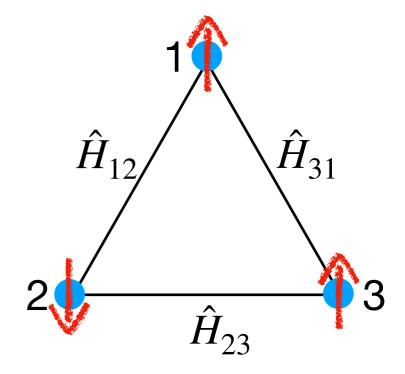
- e.g. N = 11, a = 2, $L_{1,2} \neq 0 \mod 10$
- $S_{\text{top}} \neq 0$ unless a is a multiple of rad(N)

These models are frustration free!! → Explore general properties of FF systems

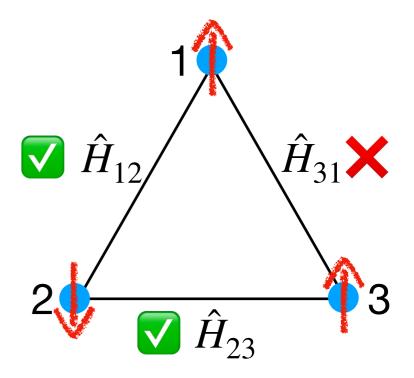
$$\hat{H} = \hat{H}_{12} + \hat{H}_{23} + \hat{H}_{31}$$



$$\hat{H} = \hat{H}_{12} + \hat{H}_{23} + \hat{H}_{31}$$

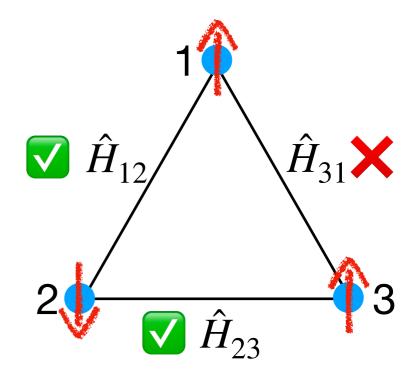


$$\hat{H} = \hat{H}_{12} + \hat{H}_{23} + \hat{H}_{31}$$



$$\hat{H} = \hat{H}_{12} + \hat{H}_{23} + \hat{H}_{31}$$

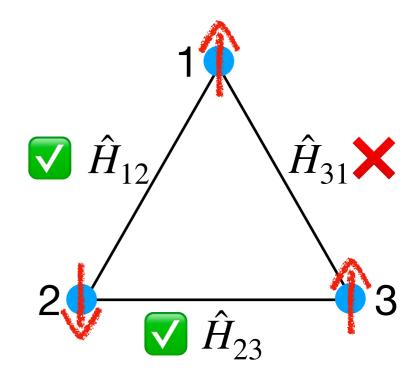
- No way of making all terms simultaneously minimized.
 - → frustration.



 Antiferromagetic interaction among three spins 1,2,3.

$$\hat{H} = \hat{H}_{12} + \hat{H}_{23} + \hat{H}_{31}$$

- No way of making all terms simultaneously minimized.
 - → frustration.



- More generally, $\hat{H} = \sum_i \hat{H}_i$ is frustration free if
 - \hat{H}_i 's are finite ranged.
 - Ground state $|\Phi_{\rm GS}\rangle$ of \hat{H} minimizes all \hat{H}_i simultaneously. i.e., $\hat{H}_i |\Phi_{\rm GS}\rangle = E_{{\rm GS},i} |\Phi_{\rm GS}\rangle$ and $E_{{\rm GS},i}$ is GS energy of \hat{H}_i .

 \hat{H}_i 's do not have to commute with each other.

Examples of FF spin models

Paramagnet:

$$\hat{H}_i = -\hat{s}_i^z$$

Trivial

Majumdar-Ghosh model:

$$\hat{H}_{i}^{(S=1/2)} = \hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+1} + \hat{\vec{s}}_{i+1} \cdot \hat{\vec{s}}_{i+2} + \hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+2}$$

SSB of translation

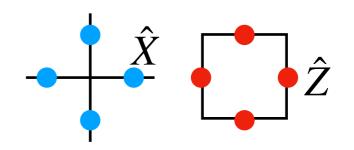
AKLT:

$$\hat{H}_{i}^{(S=1)} = \hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+1} + \frac{1}{3} (\hat{\vec{s}}_{i} \cdot \hat{\vec{s}}_{i+1})^{2}$$

SPT

Toric code:

$$\hat{H} = -\sum_{+} \hat{V}_{+} - \sum_{\square} \hat{P}_{\square}$$

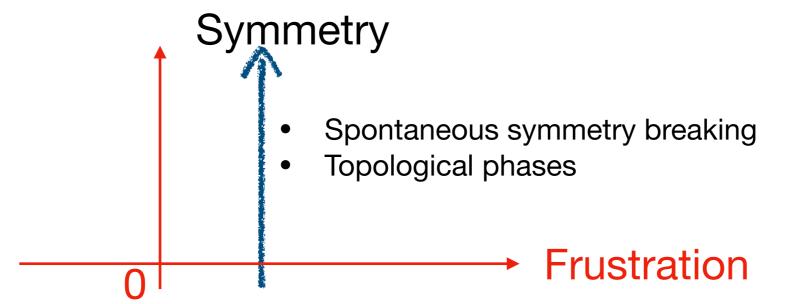


Topological Order

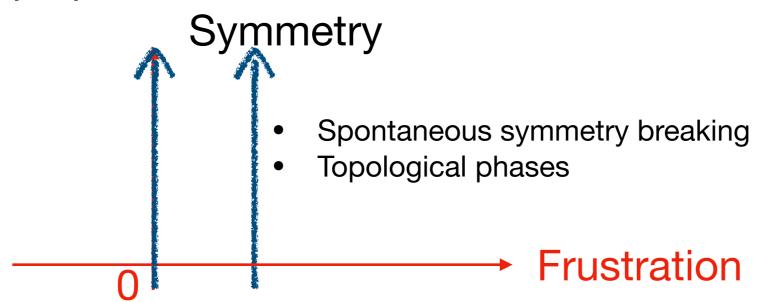
Other commuting projector Hamiltonians

- We want to understand
 - General properties and limitations of FF Hamiltonians.
 Symmetry
 - Spontaneous symmetry breaking
 - Topological phases

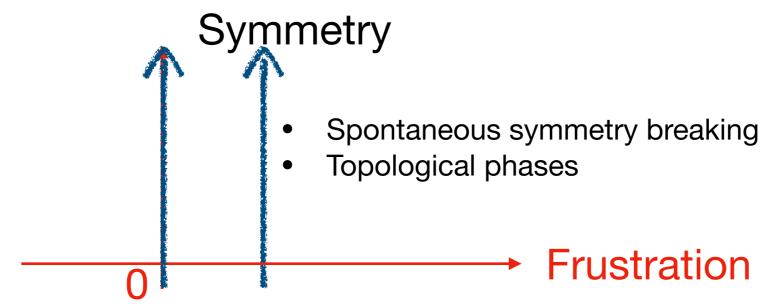
- We want to understand
 - General properties and limitations of FF Hamiltonians.



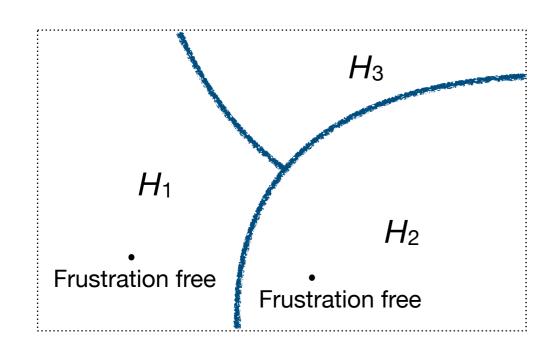
- We want to understand
 - General properties and limitations of FF Hamiltonians.

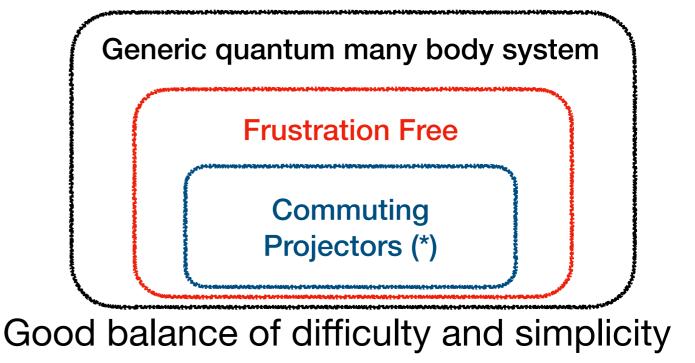


- We want to understand
 - General properties and limitations of FF Hamiltonians.



Which phases can be represented by FF Hamiltonians.





Conjectures on FF systems

Masaoka-Soejima-HW (2024)

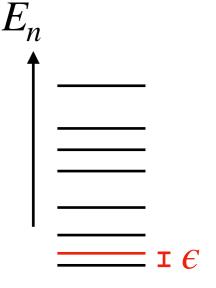
Sengoku-Po-HW (2025)

Scaling of finite-size gap

Masaoka-Soejima-HW PRB (2024)

Conjecture 1: If \hat{H} is FF and gapless, then

the finite size gap of \hat{H} is $\epsilon \sim L^{-z}$ with $z \geq 2$.



Scaling of finite-size gap

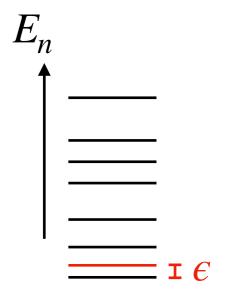
Masaoka-Soejima-HW PRB (2024)

Conjecture 1: If \hat{H} is FF and gapless, then

the finite size gap of \hat{H} is $\epsilon \sim L^{-z}$ with $z \geq 2$.

With translation symmetry, there exists $|\Psi_{ec{k}}
angle$ such that

$$\hat{T}_{\vec{a}} | \Psi_{\vec{k}} \rangle = e^{-i\vec{k}\cdot\vec{a}} | \Psi_{\vec{k}} \rangle$$

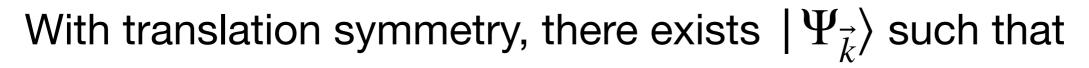


Scaling of finite-size gap

Masaoka-Soejima-HW PRB (2024)

Conjecture 1: If \hat{H} is FF and gapless, then

the finite size gap of \hat{H} is $\epsilon \sim L^{-z}$ with $z \geq 2$.



$$\hat{T}_{\vec{a}} | \Psi_{\vec{k}} \rangle = e^{-i\vec{k}\cdot\vec{a}} | \Psi_{\vec{k}} \rangle$$

Low-energy effective field theory of gapless FF system cannot be Lorentz invariant.

Absence of finite size splitting

Masaoka-Soejima-HW (2024)

- Arrange all eigenvalues of \hat{H} as $E_1 \leq E_2 \leq \cdots \leq E_D$.
- In general (regardless of frustration), $\hat{H} \text{ is gapped} \Leftrightarrow \text{there exists } N_{\text{deg}} \text{ such that} \\ \lim_{L \to \infty} E_{N_{\text{deg}}} = E_1 \text{ and } \lim_{L \to \infty} E_{N_{\text{deg}}+1} \neq E_1.$

finite size splitting

energy gap

$$= -E_{N_{\text{deg}}+1}$$

$$= -E_{N_{\text{deg}}}$$

$$= -E_{N_{\text{deg}}}$$

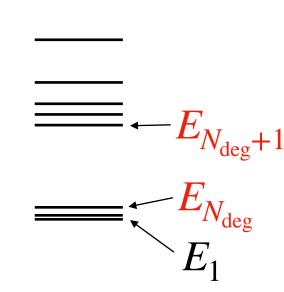
$$= -E_{N_{\text{deg}}}$$

Absence of finite size splitting

Masaoka-Soejima-HW (2024)

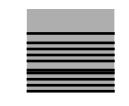
- Arrange all eigenvalues of \hat{H} as $E_1 \leq E_2 \leq \cdots \leq E_D$.
- In general (regardless of frustration), \hat{H} is gapped \Leftrightarrow there exists N_{deg} such that

$$\lim_{L\to\infty} E_{N_{\mathrm{deg}}} = E_1 \text{ and } \lim_{L\to\infty} E_{N_{\mathrm{deg}}+1} \neq E_1.$$
 finite size splitting energy gap



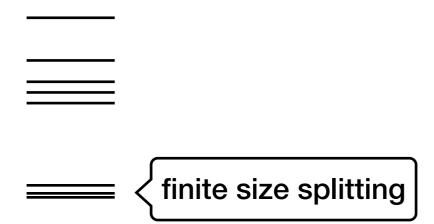
 \bullet Conjecture 2: If \hat{H} is FF and gapped, $E_{N_{\mathrm{deg}}}=E_1$ for finite L

$$E_1$$
 E_2 $E_{\tilde{N}_{\text{deg}}}$



Examples

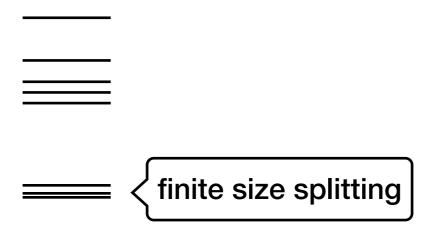
- Frustrated models
 - Transverse-field Ising model
 - perturbed MG model
 - Haldane model (OBC)
 - perturbed toric code (PBC)



Examples

- Frustrated models
 - Transverse-field Ising model
 - perturbed MG model
 - Haldane model (OBC)
 - perturbed toric code (PBC)

- Frustration Free
 - Ising model
 - MG model
 - ALKT model (OBC)
 - toric code (PBC)



Absence of chiral phases

- No local commuting projector Hamiltonian
 - for thermal Hall states Kitaev (2006)
 - for electric Hall states Kapustin-Fidkowski (2020)
- Gaussian fermionic PEPS for Chern insulator has power-law correlations
 Parent Hamiltonians is either gapless or power-law hopping. Wahl et al (2013)

Dubail-Read (2015)

Absence of chiral phases

- No local commuting projector Hamiltonian
 - for thermal Hall states Kitaev (2006)
 - for electric Hall states Kapustin-Fidkowski (2020)
- Gaussian fermionic PEPS for Chern insulator has power-law correlations
 Parent Hamiltonians is either gapless or power-law hopping. Wahl et al (2013)
 Dubail-Read (2015)
- Conjecture 3: If \hat{H} is FF, finite-ragened, and gapped, Hall conductance = 0. Ono-Masaoka-HW-Po, arXiv:2503.14312 Sengoku-Po-HW, arXiv:2505.01010

Partial Proof

S=1/2 spin models

(a) \hat{H}^{2D}

- S=1/2
- Translation invariance
- Nearest-neighbor interactions
- d dimensional hypercubic lattice

Only two gapless FF classes

 $\begin{aligned} & \operatorname{rank}[Q_{i,i+1}] = 1 : & \operatorname{Min-Max \ theorem: } \hat{H} \geq \hat{H}' \ \operatorname{implies} \ \lambda_n \geq \lambda_n' \\ & \hat{Q}_{i,i+1} = |\psi\rangle \langle \psi|_{i,i+1} \ \operatorname{with} \\ & |\psi\rangle = (\alpha + i\beta) \, |0,1\rangle + (\alpha \pm i\beta) \, |1,0\rangle + \delta \, |1,1\rangle \\ & (\alpha = 0, \beta = 1/\sqrt{2} \rightarrow \operatorname{Heisenberg \ model} \ \hat{Q}_{i,i+1} = \frac{1}{\varLambda} - \hat{\vec{s}}_i \cdot \hat{\vec{s}}_{i+1}) \end{aligned}$

$$\operatorname{rank}[Q_{i,i+1}] = 2:$$

$$\hat{Q}_{i,i+1} = \frac{1}{2} - \frac{1}{2} (e^{i\theta} \hat{s}_i^+ \hat{s}_{i+1}^- + \text{h.c.}) - \frac{1}{2} (\hat{s}_i^z + \hat{s}_{i+1}^z)$$

Bravyi-Gosset (2015) Masaoka-Soejima-HW (2024)

(b) $\hat{H}^{(1)}$

New theorem

- Suppose \hat{H} is frustration free.
- Also, suppose an equal-time correlation function shows a power-law decay (possible only in gapless system)

$$|\langle \Phi_{\mathrm{GS}} | \, \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} - \hat{G}) \hat{\mathcal{O}}_{\vec{y}}^{\prime} | \, \Phi_{\mathrm{GS}} \rangle \, | \, \sim CL^{-p} \, \, \mathrm{for} \, \, |\vec{x} - \vec{y}| \, \sim L$$

 \hat{G} is the projector onto GS manifold.

Then, the finite size gap of \hat{H} is

$$\epsilon = O((\log L)^2/L^2)$$

implying that $\epsilon \sim L^{-z}$ with $z \geq 2$.

Proof by Gosset-Huang inequality

• Hastings-Koma (2006): In general, in systems with spectral gap ϵ $|\langle \Phi_{\text{GS}} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} - \hat{G}) \hat{\mathcal{O}}_{\vec{y}}^{\prime} | \Phi_{\text{GS}} \rangle| \leq C e^{-g' |\vec{x} - \vec{y}| \epsilon}$

$$\rightarrow \text{Correlation length } \xi \sim \frac{1}{\epsilon}$$

Proof by Gosset-Huang inequality

- Hastings-Koma (2006): In general, in systems with spectral gap ϵ $|\langle \Phi_{\rm GS} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} \hat{G}) \hat{\mathcal{O}}_{\vec{y}}^{\prime} | \Phi_{\rm GS} \rangle| \leq C e^{-g'|\vec{x} \vec{y}|\epsilon}$
 - $\rightarrow \text{Correlation length } \xi \sim \frac{1}{\epsilon}$
- Gosset-Huang (2016): If H is frustration-free,

$$|\langle \Phi_{\text{GS}} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} - \hat{G}) \hat{\mathcal{O}}_{\vec{y}}^{\prime} | \Phi_{\text{GS}} \rangle| \leq C \exp\left(-g' | \vec{x} - \vec{y} | \sqrt{\frac{\epsilon}{g^2 + \epsilon}}\right)$$

$$\rightarrow$$
 Correlation length $\xi \sim \frac{1}{\sqrt{\epsilon}}$

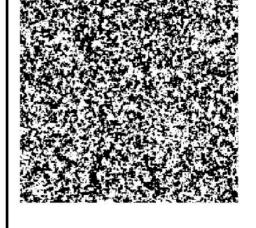
Proof by Gosset-Huang inequality

- Hastings-Koma (2006): In general, in systems with spectral gap ϵ $|\langle \Phi_{\rm GS} | \hat{\mathcal{O}}_{\vec{v}}^{\dagger} (\hat{1} \hat{G}) \hat{\mathcal{O}}_{\vec{v}}^{\prime} | \Phi_{\rm GS} \rangle| \leq C e^{-g' |\vec{x} \vec{y}| \epsilon}$
 - $\rightarrow \text{Correlation length } \xi \sim \frac{1}{\epsilon}$
- Gosset-Huang (2016): If H is frustration-free, $|\langle \Phi_{\rm GS} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} \hat{G}) \hat{\mathcal{O}}_{\vec{y}}^{\prime} | \Phi_{\rm GS} \rangle | \leq C \exp \left(-g' | \vec{x} \vec{y} | \sqrt{\frac{\varepsilon}{g^2 + \varepsilon}} \right) L^z$
 - \rightarrow Correlation length $\xi \sim \frac{1}{\sqrt{\epsilon}}$
- Consistent with $|\langle \Phi_{\rm GS} | \hat{\mathcal{O}}_{\vec{x}}^{\dagger} (\hat{1} \hat{G}) \hat{\mathcal{O}}_{\vec{y}}^{\prime} | \Phi_{\rm GS} \rangle| \sim C L^{-p}$ ($|\vec{x} \vec{y}| \sim L$) only when $\epsilon = O(L^{-2})$.

Unexpected application

Relaxation to equilibrium state in Markov chain L=256

- Boltzmann weight $w(C) = e^{-E(C)}$ e.g. Ising model $E(C) = -J\sum_{(i,j)}\sigma_i\sigma_j$
- t = 4



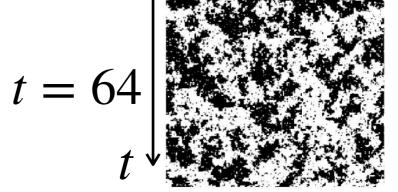
Master equation:

$$\frac{d}{dt}p(t,C) = \sum_{C' \in S} W_{C,C'}p(t,C')$$

- Local update rule: $W = \sum_{i} W_{i}$
- Detailed balance condition:

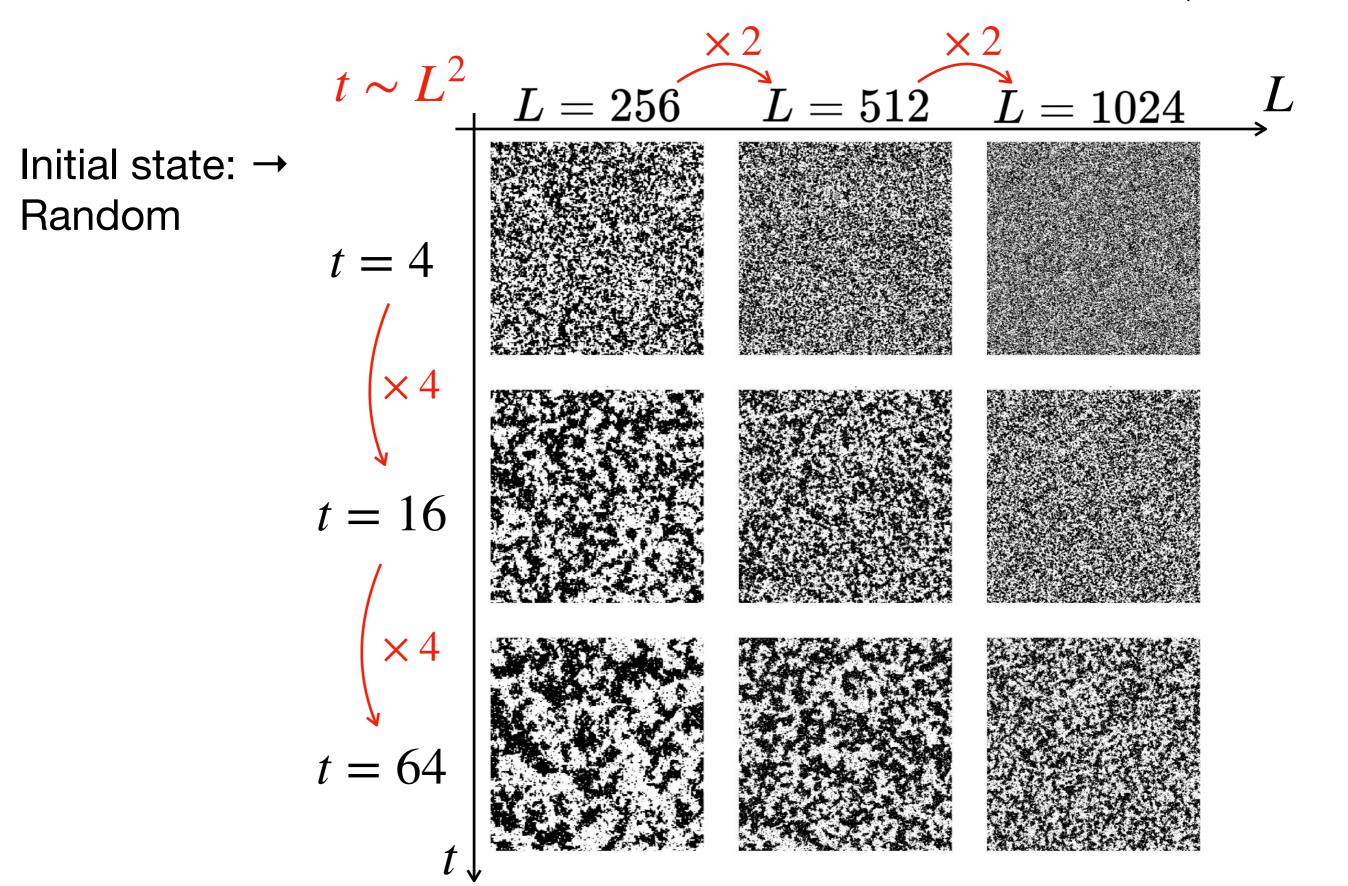
$$W_{C,C'}w(C') = W_{C',C}w(C)$$

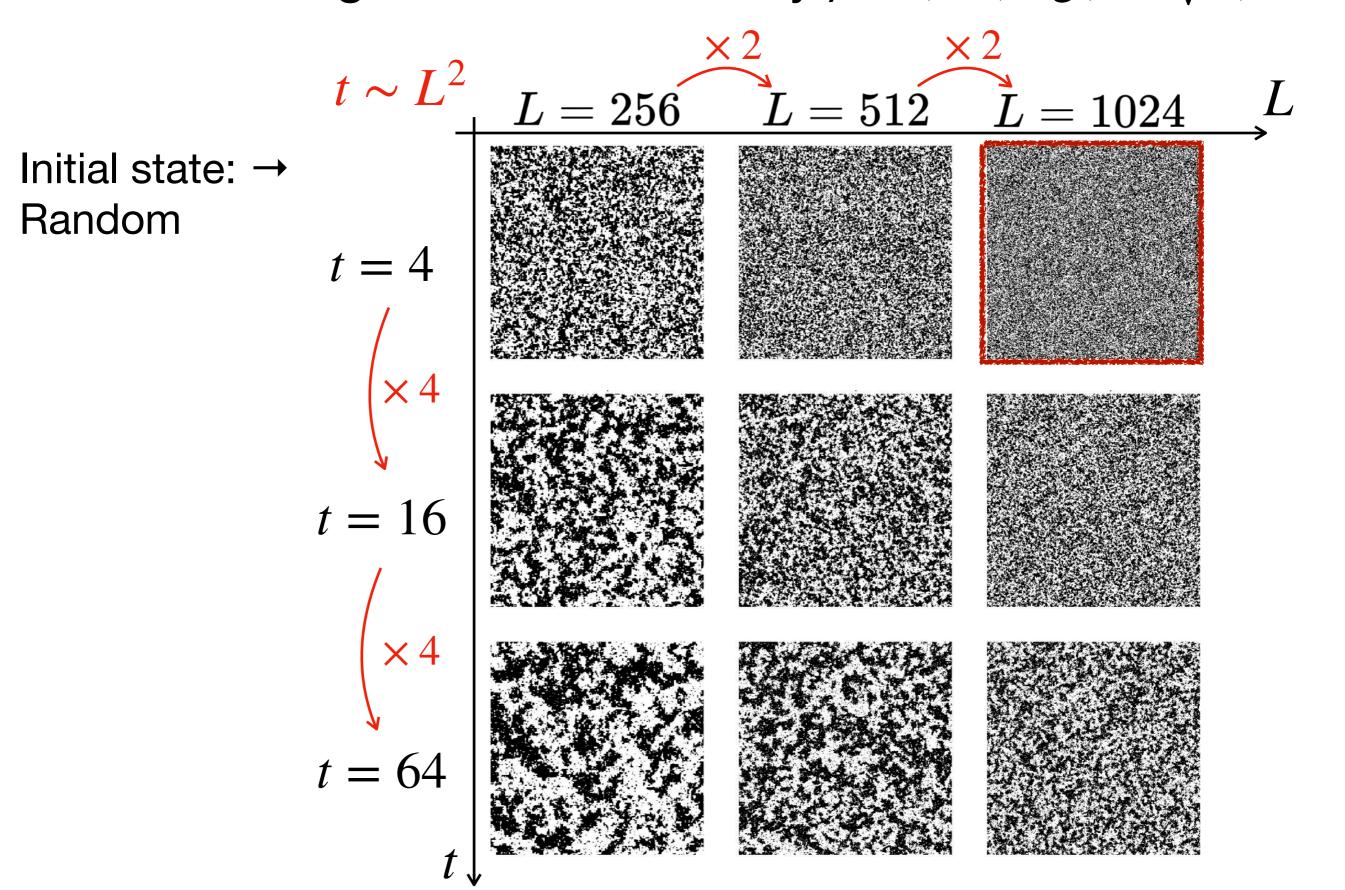
$$t = 16$$

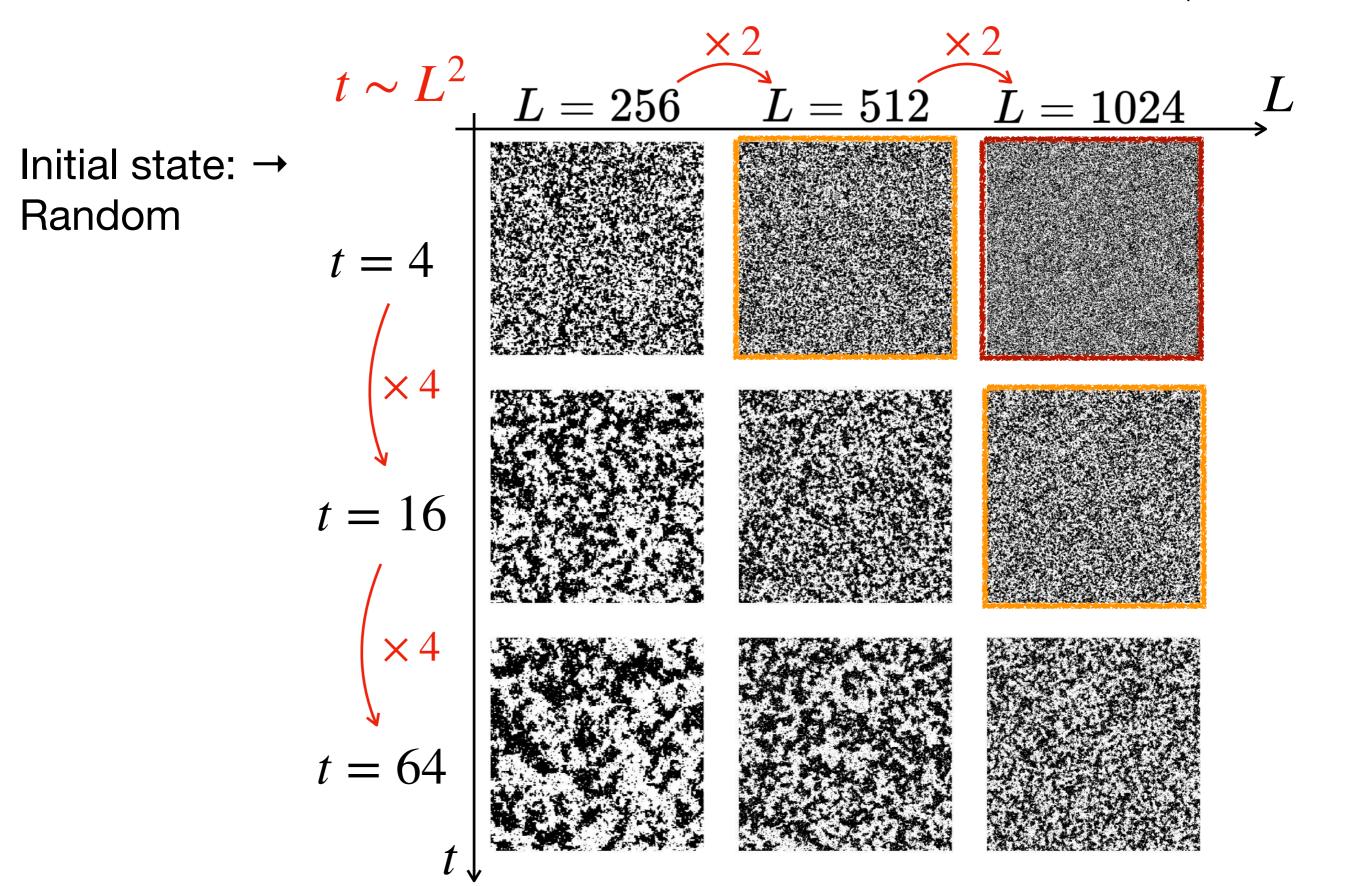


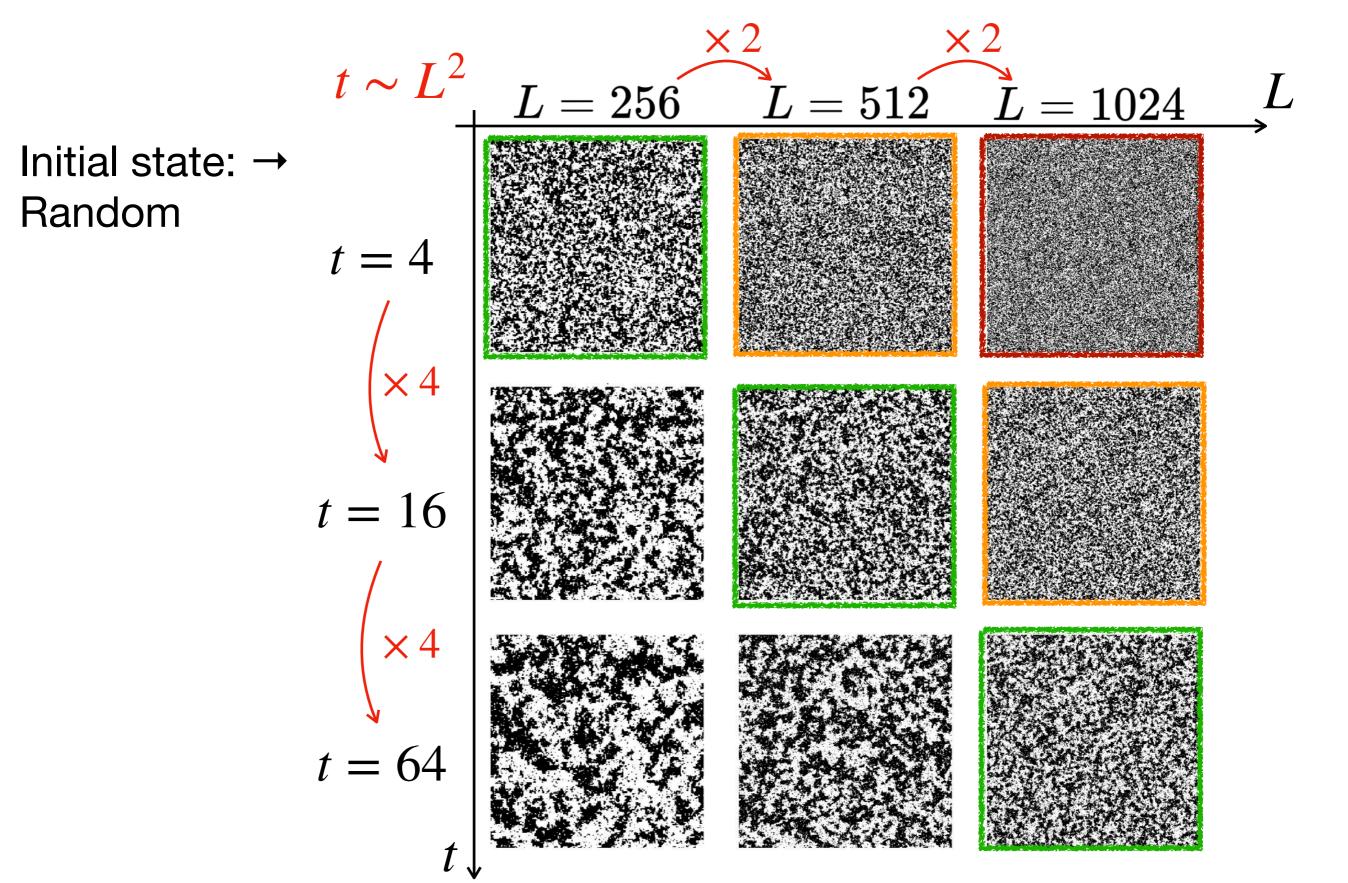
Markov chain Monte Carlo for 2D Ising model

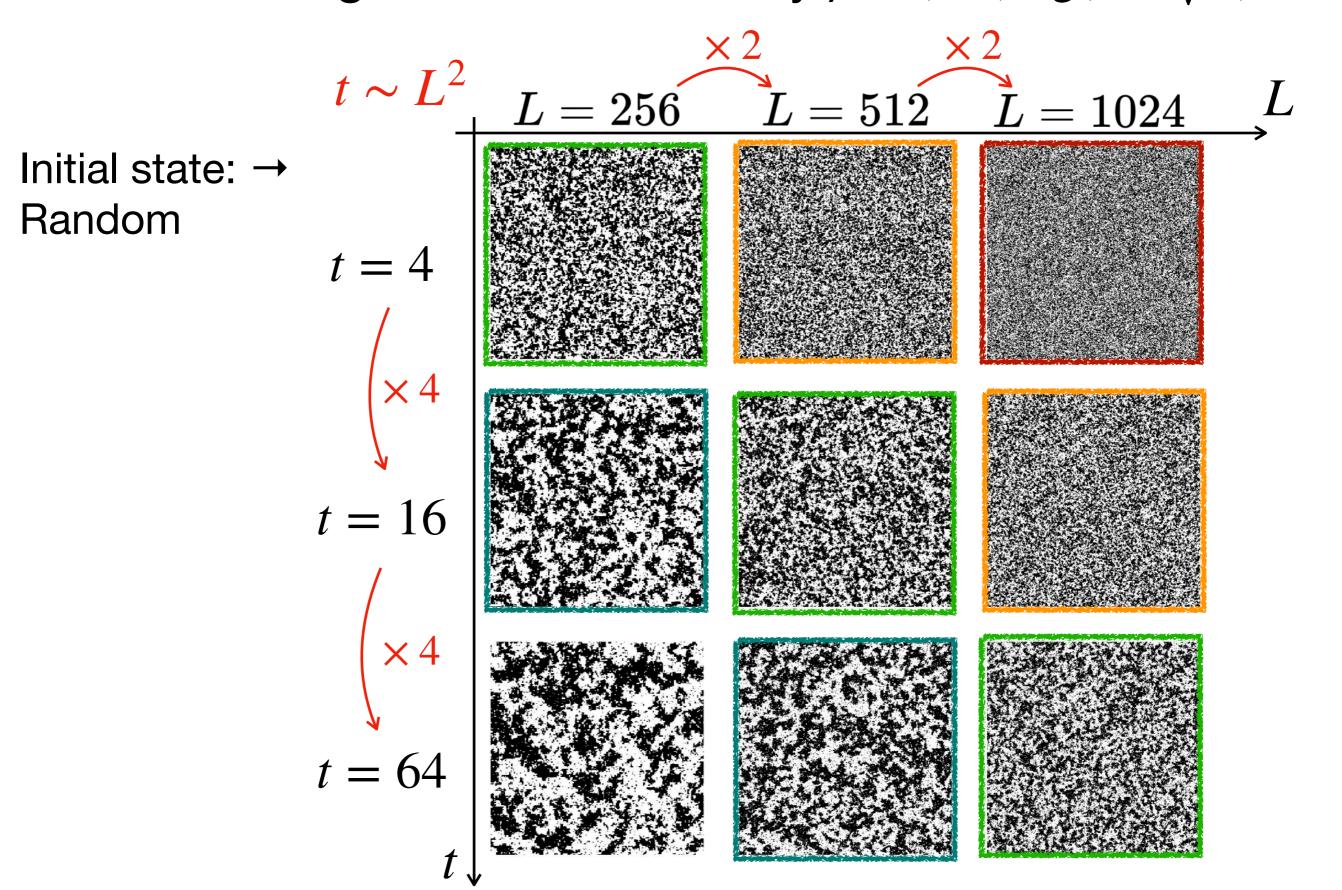
 $L=512 \hspace{0.5cm} L=1024$ L=256Initial state: → Random t = 16

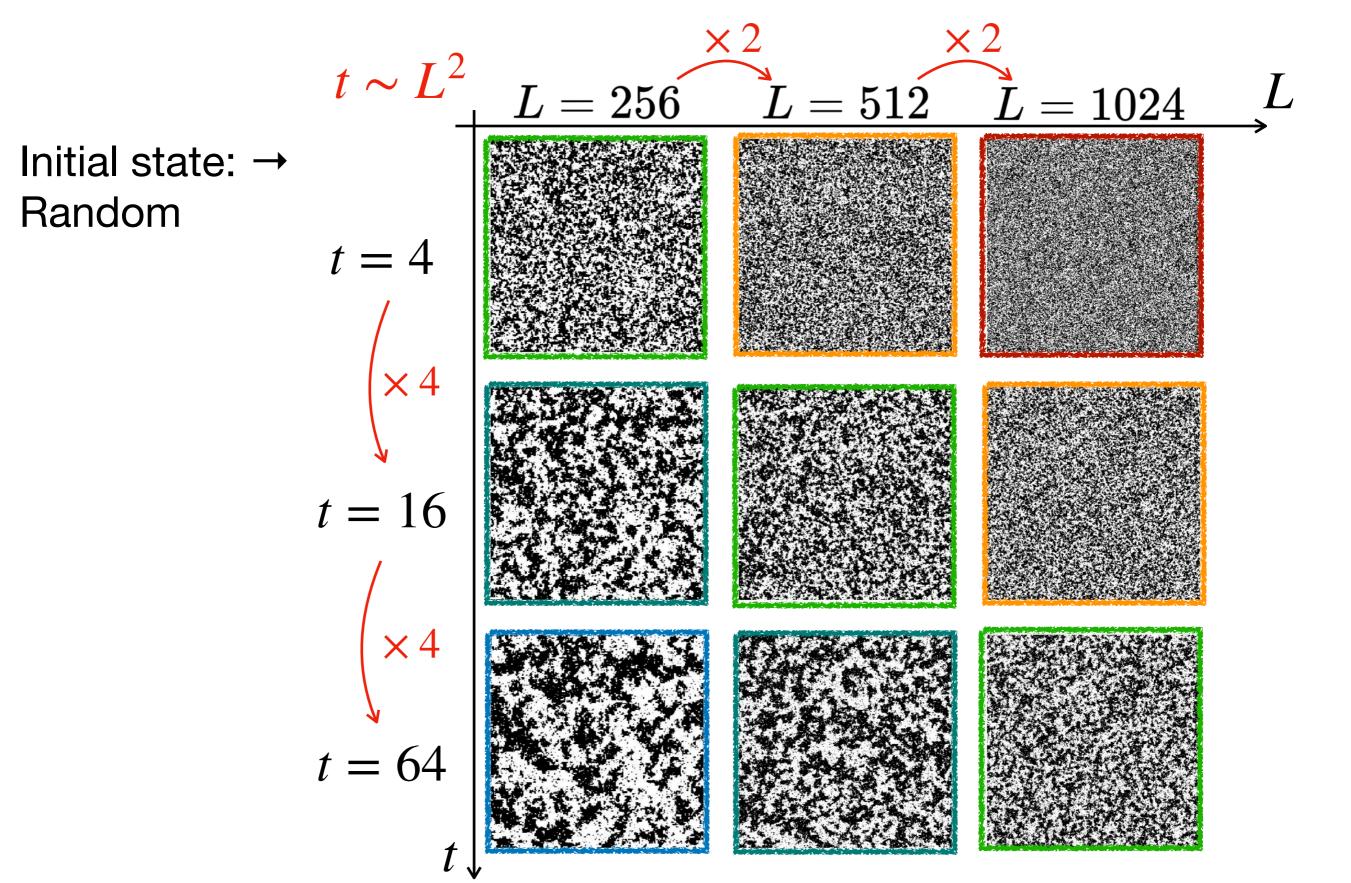












• As the system approaches to a critical point, the relaxation time τ becomes longer and longer.

disordered critical ordered $\beta = 1/T$

• At the critical point, the relaxation time $\tau \propto L^z$ (z : dynamic critical exponent).

$$|\langle Oe^{Wt}O\rangle - \langle O\rangle^2| \simeq Ce^{-t/\tau}$$
 with $\tau = 1/\epsilon$.

• As the system approaches to a critical point, the relaxation time τ becomes longer and longer.

disordered	critical	ordered	$\beta = 1/T$

• At the critical point, the relaxation time $\tau \propto L^z$ (z : dynamic critical exponent).

$$|\langle Oe^{Wt}O\rangle - \langle O\rangle^2| \simeq Ce^{-t/\tau}$$
 with $\tau = 1/\epsilon$.

z		
2.1667(5) [14]	1	
2.0245(15) [15]		
2.033(5) [16]	}	z > 2
2.193(5) [17]		_
[2.296(5)])	
3/2 [50, 51])	z < 2
0.3 [10]	}	2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	2.1667(5) [14] 2.0245(15) [15] 2.033(5) [16] 2.193(5) [17]	2.1667(5) [14] 2.0245(15) [15] 2.033(5) [16] 2.193(5) [17] 2.296(5) [18]

• As the system approaches to a critical point, the relaxation time τ becomes longer and longer.

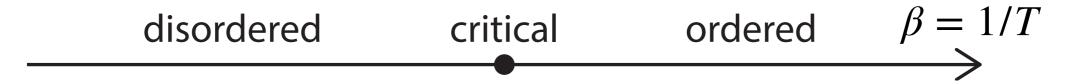
disordered	critical	ordered	$\beta = 1/T$

• At the critical point, the relaxation time $\tau \propto L^z$ (z : dynamic critical exponent).

$$|\langle Oe^{Wt}O\rangle - \langle O\rangle^2| \simeq Ce^{-t/\tau}$$
 with $\tau = 1/\epsilon$.

Models	z	Detailed balance	Locality
Ising (2D)	2.1667(5) [14]	✓	✓
Ising (3D)	2.0245(15) [15]	✓	✓
Heisenberg (3D)	2.033(5) [16]	✓	✓
Three-state Potts (2D)	2.193(5) [17]	✓	✓
Four-state Potts (2D)	2.296(5) [18]	√	✓
ASEP	3/2 [50, 51]	×	√
Wolff algorithm	0.3 [10]	\checkmark	×

• As the system approaches to a critical point, the relaxation time τ becomes longer and longer.



• At the critical point, the relaxation time $\tau \propto L^z$ (z : dynamic critical exponent).

$$|\langle Oe^{Wt}O\rangle - \langle O\rangle^2| \simeq Ce^{-t/\tau}$$
 with $\tau = 1/\epsilon$.

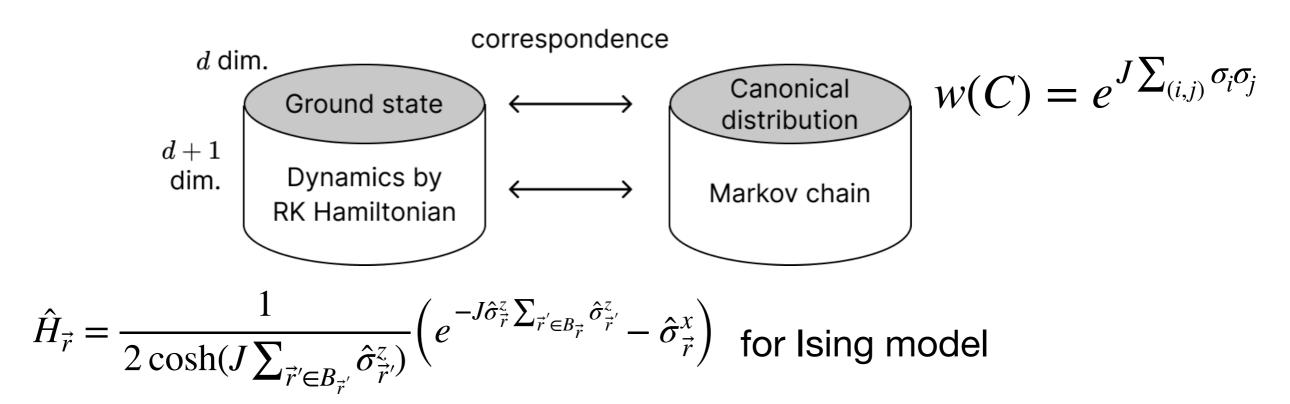
Models	z	Detailed balance	Locality
Ising (2D)	2.1667(5) [14]	✓	✓
Ising (3D)	2.0245(15) [15]	✓	✓
Heisenberg (3D)	2.033(5) [16]	✓	✓
Three-state Potts (2D)	2.193(5) [17]	✓	✓
Four-state Potts (2D)	2.296(5) [18]	√	✓
ASEP	3/2 [50, 51]	×	✓
Wolff algorithm	0.3 [10]	✓	×

• However, only $z \ge 1.75$ has been proven for 2D Ising model so far.

Mapping to frustration-free Hamiltonian

Markov chain with detailed balance and locality

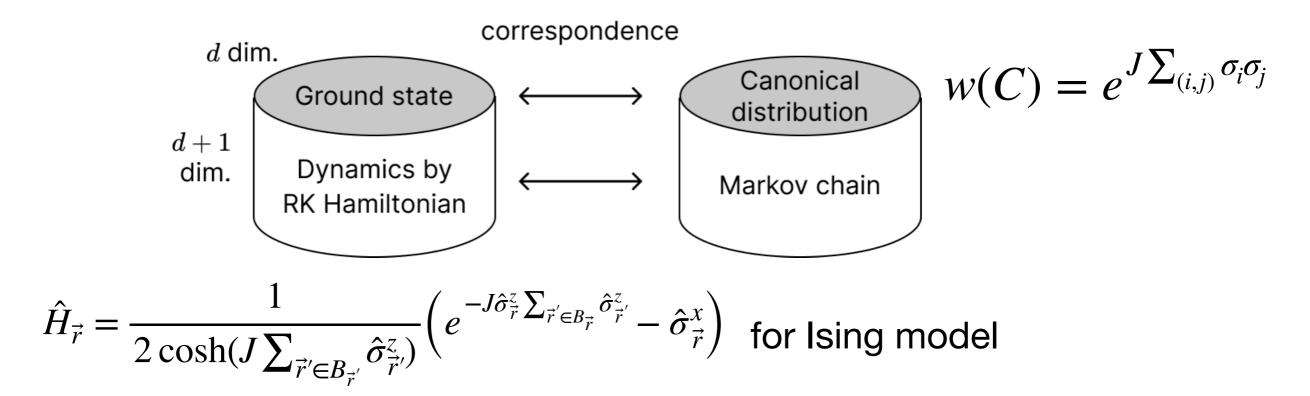
can be mapped to FF Hamiltonian by
$$H_{C,C'} = -\sqrt{\frac{w(C')}{w(C)}}W_{C,C'}$$
.



Mapping to frustration-free Hamiltonian

Markov chain with detailed balance and locality

can be mapped to FF Hamiltonian by
$$H_{C,C'} = -\sqrt{\frac{w(C')}{w(C)}}W_{C,C'}$$
.



• Our result on FF Hamiltonian $e = O((\log L)^2/L^2)$ immediately gives the first ever proof of $z \ge 2!!$

Fermionic Systems

Free Fermions

When a tight-binding model $\hat{H} = \sum_{i,j \in \Lambda} \hat{c}_i^{\dagger} t_{ij} \hat{c}_j$ frustration free?

- Do the three conjectures hold?
 - If gapless, finite size gap is $\epsilon \sim L^{-z}$ with $z \ge 2$.
 - If gapped, finite size splitting of degeneracy is absent.
 - No local FF Hamiltonian for Chern insulators.

Tight-binding model

$$\hat{H} = \sum_{\overrightarrow{R}} \hat{H}_{\overrightarrow{R}} \text{ with } \hat{H}_{\overrightarrow{R}} = \hat{\overrightarrow{c}}_{\overrightarrow{R}}^{\dagger} h_{\overrightarrow{R}} \hat{\overrightarrow{c}}_{\overrightarrow{R}} + C_{\overrightarrow{R}}.$$

arXiv 2503.12879 arXiv 2503.14312

 $h_{\overrightarrow{R}}$ is a Hermitian matrix and $\hat{\overrightarrow{c}}_{\overrightarrow{R}} = \begin{pmatrix} \hat{c}_{\overrightarrow{R}} & \hat{c}_{\overrightarrow{R}+\overrightarrow{a}} & \cdots \end{pmatrix}$ a finite dimension (= range of hopping) vector.

Tight-binding model

$$\hat{H} = \sum_{\overrightarrow{R}} \hat{H}_{\overrightarrow{R}} \text{ with } \hat{H}_{\overrightarrow{R}} = \hat{\overrightarrow{c}}_{\overrightarrow{R}}^{\dagger} h_{\overrightarrow{R}} \hat{\overrightarrow{c}}_{\overrightarrow{R}} + C_{\overrightarrow{R}}.$$

arXiv 2503.12879 arXiv 2503.14312

 $h_{\overrightarrow{R}}$ is a Hermitian matrix and $\hat{\overrightarrow{c}}_{\overrightarrow{R}} = \begin{pmatrix} \hat{c}_{\overrightarrow{R}} & \hat{c}_{\overrightarrow{R}+\overrightarrow{a}} & \cdots \end{pmatrix}$ a finite dimension (= range of hopping) vector.

Can be written as
$$\hat{H}_{\overrightarrow{R}} = \sum_{\alpha} \mu_{\overrightarrow{R}\alpha} \hat{\psi}_{\overrightarrow{R}\alpha}^{\dagger} \hat{\psi}_{\overrightarrow{R}\alpha} + \sum_{\beta} \nu_{\overrightarrow{R}\beta} \hat{\phi}_{\overrightarrow{R}\beta} \hat{\phi}_{\overrightarrow{R}\beta}^{\dagger}$$
.

$$h_{\overrightarrow{R}} = \sum_{\alpha} \mu_{\overrightarrow{R}\alpha} \overrightarrow{\psi}_{\overrightarrow{R}\alpha} \overrightarrow{\psi}_{\overrightarrow{R}\alpha} \overrightarrow{\psi}_{\overrightarrow{R}\alpha} - \sum_{\beta} \nu_{\overrightarrow{R}\beta} \overrightarrow{\phi}_{\overrightarrow{R}\beta} \overrightarrow{\phi}_{\overrightarrow{R}\beta} \overrightarrow{\phi}_{\overrightarrow{R}\beta} \overrightarrow{\phi}_{\overrightarrow{R}\beta}$$

$$\Rightarrow \text{positive semidefinite}$$

$$\hat{\psi}_{\overrightarrow{R}\alpha} = \overrightarrow{\psi}_{\overrightarrow{R}\alpha}^{\dagger} \hat{\overrightarrow{c}}_{\overrightarrow{R}} \text{ and } \hat{\phi}_{\overrightarrow{R}\beta} = \overrightarrow{\phi}_{\overrightarrow{R}\beta}^{\dagger} \hat{\overrightarrow{c}}_{\overrightarrow{R}} \text{ and set } C_{\overrightarrow{R}} = \sum_{\beta} \nu_{\overrightarrow{R}\beta}.$$

Tight-binding model

$$\hat{H} = \sum_{\overrightarrow{R}} \hat{H}_{\overrightarrow{R}} \text{ with } \hat{H}_{\overrightarrow{R}} = \hat{\overrightarrow{c}}_{\overrightarrow{R}}^{\dagger} h_{\overrightarrow{R}} \hat{\overrightarrow{c}}_{\overrightarrow{R}} + C_{\overrightarrow{R}}.$$

arXiv 2503.12879 arXiv 2503.14312

 $h_{\overrightarrow{R}}$ is a Hermitian matrix and $\hat{\overrightarrow{c}}_{\overrightarrow{R}} = \begin{pmatrix} \hat{c}_{\overrightarrow{R}} & \hat{c}_{\overrightarrow{R}+\overrightarrow{a}} & \cdots \end{pmatrix}$ a finite dimension (= range of hopping) vector.

Can be written as
$$\hat{H}_{\overrightarrow{R}} = \sum_{\alpha} \mu_{\overrightarrow{R}\alpha} \hat{\psi}_{\overrightarrow{R}\alpha}^{\dagger} \hat{\psi}_{\overrightarrow{R}\alpha} + \sum_{\beta} \nu_{\overrightarrow{R}\beta} \hat{\phi}_{\overrightarrow{R}\beta} \hat{\phi}_{\overrightarrow{R}\beta}^{\dagger}$$
.

$$h_{\overrightarrow{R}} = \sum_{\alpha} \mu_{\overrightarrow{R}\alpha} \overrightarrow{\psi}_{\overrightarrow{R}\alpha} \overrightarrow{\psi}_{\overrightarrow{R}\alpha}^{\dagger} - \sum_{\beta} n_{\overrightarrow{R}\beta} \overrightarrow{\phi}_{\overrightarrow{R}\beta} \overrightarrow{\phi}_{\overrightarrow{R}\beta} \overrightarrow{\phi}_{\overrightarrow{R}\beta}^{\dagger}$$

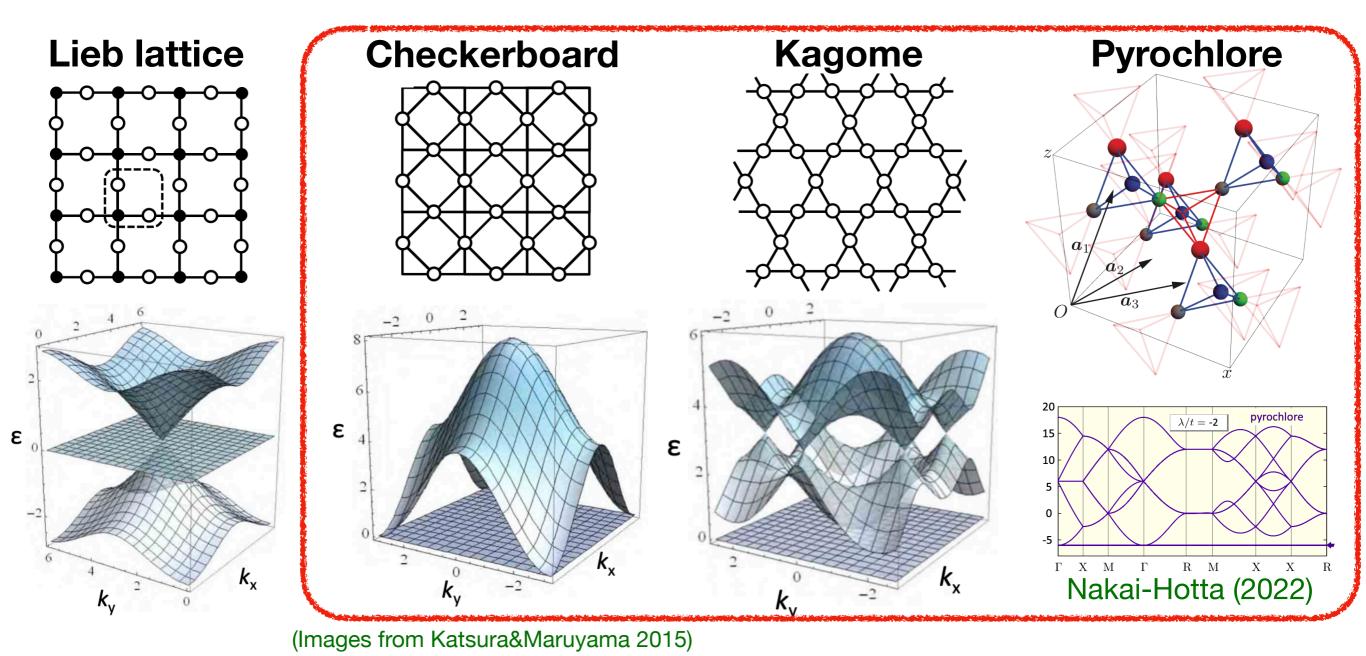
$$\hat{H}^{(+)}_{\overrightarrow{R}} \longrightarrow \hat{H}^{(-)}_{\overrightarrow{R}}$$
 positive semidefinite

$$\hat{\psi}_{\overrightarrow{R}\alpha} = \overrightarrow{\psi}_{\overrightarrow{R}\alpha}^{\dagger} \hat{\overrightarrow{c}}_{\overrightarrow{R}} \text{ and } \hat{\phi}_{\overrightarrow{R}\beta} = \overrightarrow{\phi}_{\overrightarrow{R}\beta}^{\dagger} \hat{\overrightarrow{c}}_{\overrightarrow{R}} \text{ and set } C_{\overrightarrow{R}} = \sum_{\beta} \nu_{\overrightarrow{R}\beta}.$$

- Frustration-free if and only if $\hat{\psi}_{\overrightarrow{R}\alpha}|\Phi\rangle = \hat{\phi}_{\overrightarrow{R}'\beta}^{\dagger}|\Phi\rangle = 0$.
- $\quad \text{Equivalently, } \{\hat{\psi}_{\overrightarrow{R}\alpha},\hat{\phi}_{\overrightarrow{R}'\beta}^{\dagger}\} = 0 \text{ for all } \overrightarrow{R},\overrightarrow{R}',\alpha,\beta \quad \rightarrow \quad [\hat{H}_{\overrightarrow{R}}^{(+)},\hat{H}_{\overrightarrow{R}'}^{(-)}] = 0.$

Examples

Flat bands with quadratic band touching



Repulsive interaction → Flatband ferromagnets (Mielke, Tasaki,)

Frustration-Free Fee Fermions

arXiv 2503.12879 arXiv 2503.14312

Can be written as
$$\hat{H}_{\overrightarrow{R}} = \sum_{\alpha} \mu_{\overrightarrow{R}\alpha} \hat{\psi}_{\overrightarrow{R}\alpha}^{\dagger} \hat{\psi}_{\overrightarrow{R}\alpha} + \sum_{\beta} \nu_{\overrightarrow{R}\beta} \hat{\phi}_{\overrightarrow{R}\beta} \hat{\phi}_{\overrightarrow{R}\beta}^{\dagger}$$
.

Fourier transform

$$\hat{H}_{\overrightarrow{R}}^{(+)}$$
 $\hat{H}_{\overrightarrow{R}}^{(-)}$
 $\hat{C}_{\overrightarrow{k}}^{\dagger}H_{\overrightarrow{k}}^{(+)}\hat{c}_{\overrightarrow{k}}$
 $\hat{C}_{\overrightarrow{k}}^{\dagger}H_{\overrightarrow{k}}^{(-)}\hat{c}_{\overrightarrow{k}}$
 $\hat{C}_{\overrightarrow{k}}^{\dagger}H_{\overrightarrow{k}}^{(-)}\hat{c}_{\overrightarrow{k}}$

$$\hat{\vec{C}}_{\vec{k}}^{(-)}$$

$$\downarrow$$

$$\hat{\vec{c}}_{\vec{k}}^{\dagger}H_{\vec{k}}^{(-)}\hat{\vec{c}}_{\vec{k}}$$

- $\quad \text{FF condition: } \{\hat{\psi}_{\overrightarrow{R}\alpha}, \hat{\phi}_{\overrightarrow{R}'\beta}^{\dagger}\} = 0 \text{ for all } \overrightarrow{R}, \overrightarrow{R}', \alpha, \beta$
 - $\to [H_{\vec{k}}^{(+)}, H_{\vec{k}}^{(-)}] = 0$
 - $\rightarrow H_{\vec{l}}^{(+)}$ and $H_{\vec{l}}^{(-)}$ can be diagonalized separately. Both produce analytic bands.
 - \rightarrow Quadratic band touching. Excitation energy $O(L^{-2})$.

FF decomposition

 Any gapped TB model can be rewritten as FF form but with exponential tail. Kitaev (2006) for free Majoranas

$$\hat{H} = \sum_{i,j} \hat{c}_i^{\dagger} h_{i,j} \hat{c}_j = \hat{\vec{c}}^{\dagger} h \hat{\vec{c}}, \quad h = \sum_{\epsilon_n > 0} \epsilon_n P_n + \sum_{\epsilon_n < 0} \epsilon_n P_n$$

Sengoku-Po-HW (2025)

$$\begin{split} \bullet & \quad \hat{H} = \hat{\vec{c}}^{\dagger} h^{(+)} \hat{\vec{c}} + \hat{\vec{c}}^{\dagger} h^{(-)} \hat{\vec{c}} \\ & = \hat{\vec{c}}^{\dagger} h^{(+)} \hat{\vec{c}} + \hat{\vec{c}}^T (-h^{(-)T}) \left(\hat{\vec{c}}^{\dagger} \right)^T + E_0 \\ & = \hat{\vec{c}}^{\dagger} \sqrt{h^{(+)}} \sqrt{h^{(+)}} \hat{\vec{c}} + \hat{\vec{c}}^T \sqrt{-h^{(-)T}} \sqrt{-h^{(-)T}} (\hat{\vec{c}}^{\dagger})^T + E_0 \\ & = \sum_i \left((\hat{\psi}_i^{(+)})^{\dagger} \hat{\psi}_i^{(+)} + \hat{\psi}_i^{(-)} (\hat{\psi}_i^{(-)})^{\dagger} \right) \text{ with } \hat{\psi}_i^{(\pm)} = \sum_j \left(\sqrt{\pm h^{(\pm)}} \right)_{i,j} \hat{c}_j \\ & \rightarrow \text{ annihilates ground state!} \end{split}$$

FF decomposition

 Any gapped TB model can be rewritten as FF form but with exponential tail. Kitaev (2006) for free Majoranas

$$\hat{H} = \sum_{i,j} \hat{c}_i^{\dagger} h_{i,j} \hat{c}_j = \hat{\vec{c}}^{\dagger} h \hat{\vec{c}}, \quad h = \sum_{\epsilon_n > 0} \epsilon_n P_n + \sum_{\epsilon_n < 0} \epsilon_n P_n$$

Sengoku-Po-HW (2025)

•
$$\hat{H} = \hat{\vec{c}}^{\dagger} h^{(+)} \hat{\vec{c}} + \hat{\vec{c}}^{\dagger} h^{(-)} \hat{\vec{c}}$$

$$= \hat{\vec{c}}^{\dagger} h^{(+)} \hat{\vec{c}} + \hat{\vec{c}}^{T} (-h^{(-)T}) (\hat{\vec{c}}^{\dagger})^{T} + E_{0}$$

$$= \hat{\vec{c}}^{\dagger} \sqrt{h^{(+)}} \sqrt{h^{(+)}} \hat{\vec{c}} + \hat{\vec{c}}^{T} \sqrt{-h^{(-)T}} \sqrt{-h^{(-)T}} (\hat{\vec{c}}^{\dagger})^{T} + E_{0}$$

$$= \sum_{i} \left((\hat{\psi}_{i}^{(+)})^{\dagger} \hat{\psi}_{i}^{(+)} + \hat{\psi}_{i}^{(-)} (\hat{\psi}_{i}^{(-)})^{\dagger} \right) \text{ with } \hat{\psi}_{i}^{(\pm)} = \sum_{j} \left(\sqrt{\pm h^{(\pm)}} \right)_{i,j} \hat{c}_{j}$$

$$\rightarrow \text{ annihilates ground state!}$$

- $\text{e.g. } \hat{H} = \sum_{\vec{k}} \left(\hat{c}_{\vec{k}1}^{\dagger} \quad \hat{c}_{\vec{k}2}^{\dagger} \right) h_{\vec{k}} \begin{pmatrix} \hat{c}_{\vec{k}1} \\ \hat{c}_{\vec{k}2} \end{pmatrix}$ with $h_{\vec{k}} = \sin k_x \sigma_x + \sin k_y \sigma_y + (m \cos k_x \cos k_y) \sigma_y$
- Exponentially decaying tail in hopping even for Chern insulators

Summary

Explored general properties of frustration-free systems.

- Three recent conjectures on FF systems
 - ▶ If FF & gapless, finite size gap is $\epsilon \sim L^{-z}$ with $z \geq 2$.
 - → Dynamic critical exponent in 2D Ising model at criticality.
 - ► If FF & gapped, finite size splitting of degeneracy is absent.
 - No local FF Hamiltonian for Chern insulators.

Counter examples for the cojectures