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1. Scientific context



Inflation & primordial perturbation

Inflation: A phase of exponential
History of the Universe expansion of the universe, lasted for

-36 __ -33
Gravitational Waves Only 10 10 seconds.

iG]

Generates WAV AV AT ARV J s s Sl N & A 8, Inflation generates the primordial
Two Types o N/ S ~

Waves Waves Imprint Characteristic 1 1
ey fives stk s ket perturbations, seeding the structures

1222 F F P P B of the universe we see today

WWWVAANANANANNAS Inflation must have been driven by

Free Electrons Earliest Time .
Scatter Light / Visible with Light SOme process or mechanism not yet

seen => Search for new phvsics

Quantum
Fluctuations

Perturbations evolve till some time
after inflation, neutral hydrogen
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The Cosmic Microwave Background

Cosmic Microwave Background: first light of the universe — photons from primordial universe

10° 1

10!

%
= 107!
/_\L)
1|8
103
E-mode B-mode 10-5 'll;empzrature anisotapy
-modc
B-mode
—— Lensing B-mode
M0n0p01e Of 2725 K —— Primordial B-mode
Temperature anisotropy of about 100 uK from perturbation in the o e e
primordial photon/baryon plasma ¢
Polarization from anisotropic scattering with electrons and primordial The CMB angular power spectra: shows the “power” of the perturbation
gravitational wave, often decomposed into positive parity E-mode & with respect to the multipole which is related to the inverse of the angular
negative parity B-mode separation in the sky



Cosmology and the LiteBIRD mission

Perturbation can be decomposed into: Scalar (Newtonian potential), Vector (Destroyed) & Tensor (Gravitational Wave)

Scalar perturbation can only generate E-mode and temperature anisotropy

The tensor-to-scalar ratio — directly related to the energy scale of inflation:
2

r = —g = 1l6e€
Ak
r s fully diluted in the anisotropy & E-mode due to the large amplitude of scalar perturbation
=> B-mode is our direct look into primordial gravitational waves
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LiteBIRD is a satellite mission under

development by an international
collaboration led by JAXA
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Hazumi, M. et al. (2019). “LiteBIRD: A Satellite for the Studies of B-Mode
Polarization and Inflation from Cosmic Background Radiation Detection.”




Foregrounds emission and component separation

Component separation method are needed !

dust & synchrotron polarization
These are the most important effects when it comes to polarization

Context: Other sources of contamination are foreground emissions: [
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Foregrounds emission and component separation

Context: Other sources of contamination are foreground emissions:
dust & synchrotron polarization

These are the most important effects when it comes to polarization
measurement
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Diffuse component separation” (2020)



Spectral Matching ICA

* Process & components are Gaussian
No spatial variation on A
« Components are uncorrelated with each other*

N
Yo (P = ) Ay (P) + 1y ()
=1

Modeled spectrum:;
Ry (£) = AR, (D)AT + Ry (¥) Observed spectrum:

o1 R
1 \ \ R0 = 270, FOTO

(vYTy  diag(C;j(¥)) diag(Ny(£))

Maximum likelihood leads to minimizing:
Q

#(8) = > ngD(Ry (@) Rr(4,6))
q=1
D is the Kullback-Liebler Divergence:
D(R;,R,) = trace(R{R; 1) — log |R1R2‘1| —m
Parameters:

6 = (4,Ci(q), Ny (q))



SMICA in the context of component separation

Component separation can be roughly divided into 2 classes:

* Parametric: makes strong assumption on mixing matrix,
doesn’t make assumption on the component - FGBuster

* Blind: use statistical techniques, no assumption on
foregrounds emission - ILC

SMICA lies between these two classes of method

SMICA was developed at APC
Reference method for temperature in Planck
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SMICA should be able to achieve the requirement for
component separation in LiteBIRD

LiteBIRD expected component separation result for B-mode.
Method in use was FGBuster — a parametric method
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LiteBIRD collaboration, “Probing cosmic inflation with the LiteBIRD cosmic
microwave background polarization survey”, PTEP 2023
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Simulation setup

The simulations (500 random realizations of CMB + noise) are homemade, based on LiteBIRD baseline
configuration with 15 frequency bands from 40 - 402 GHz (LiteBIRD collaboration, PTEP 2023)

We implement a 2-component (dust + synchrotron) foreground, created from the library PySM
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Simplest model: dOsO - constant SED parameters across the sky (beta_dust=1.54, T_dust = 20K, beta_sync =-3)

A more realistic model: d1sl - SED parameters varies smoothly across the sky




Simple foregrounds d0s0 case

Assumptions: fixed CMB emission, white noise 103
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2. Strategies for semi-blind
component separation



SMICA for complex foregrounds

SMICA doesn’t have a framework to account for spatial variation => Two
strategies to counteract this:

+ Fitting for effective component with SMICA

+ Better modelling of the foregrounds: SMICA with Healpix patches (or some
other clustering schemes) => Allow for variation of the mixing matrix A
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SMICA with independent components

Complex foregrounds can be decomposed into a number of modes (depending on the sensitivity & the

complexity of the sky)
=> Adding more components into SMICA can solve the spatial variation

With LiteBIRD sensitivity + d1sl foregrounds: Across the concerned multipole range (2-128), fitting for 3
foregrounds components should absorb somewhat the bias coming from spatial variation

A.Carones. “Optimization of foreground moment deprojection for semi-blind CMB
polarization reconstruction” https.//arxiv.org/pdi/2402.17579
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https://arxiv.org/pdf/2402.17579

SMICA with independent components

Applying to a complex sky example (d1sl), featuring some spatial variation of the mixing matrix A on the sky
(deviating away from SMICA assumption)
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Instead of assuming constant SED across the entire sky, we just force it to be constant within certain patches (e.g. Healpix pixel)
=> Run SMICA locally on each patches

Using the SMICA-fitted parameters: mixing matrix, component spectra, noise spectra, we can reconstruct the CMB signal on the

using a filtering operation
— (AT p-1 —1\—1 AT p-1
SWF = (.‘1 R‘\r A =z Rs ) A R‘V d

Mollweide view
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A proof of concept with simple d0sO foreground: apply the procedure for each patch & combine to get the final map

Cleaned CMB map on an example patch Combined cleaned CMB map

Mollweide view Mollweide view
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Evaluating the power spectrum of the cleaned map

, Similar constraints to the full sky d0s0: in
-==-=- Primordial B-mode . .
e this case, the operation does not have an
d0s0 + noise residual bias .
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Work in progress: Push this pipeline to d1sl simulations, seeing some improvements compared to the full

sky model

We’re seeing a reduction in both foregrounds and noise residual
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3. Summary




* SMICA with effective foreground components:
o Testing with varying number of components with respect to ell
* SMICA with clustering schemes: optimization to be done
o Pushing to complex foregrounds
o Different, more optimized clustering scheme (K-means, realistic clusters built
from data...)

Achieve requirements for component separation and contribute to the data analysis
pipeline of LiteBIRD

e Other possible developments:
o Sampling the SMICA likelihood (similar to MICS)
o Joint-EB fit with SMICA: To be developed theoretically first
o Non-gaussian SMICA
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