The LiteBIRD mission: probing inflation with CMB polarization

Marta Monelli

Kavli IPMU, The University of Tokyo Kashiwa-no-ha, Japan

On behalf of the LiteBIRD collaboration

LiteBIRD Joint Study Group

Around 400 researchers from Japan,
North America and Europe

Team experience in CMB experiments, X-ray satellites and other large projects (ALMA, HEP experiments, ...)

IAS

Jet Propulsion Laboratory

K M

Kobayashi-Maskawa Institute Nagoya University

MAX-PLANCK-INSTITUT FÜR ASTROPHYSIK

McGill

re BIRD

- Lite (Light) spacecraft for the study of *B*-mode polarization and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission was selected in May 2019 to be launched by JAXA's H3 rocket
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 15 bands) at 70–18 arcmin angular resolution for precision measurements of the CMB *B* modes
- Final combined sensitivity: 2.2 µK·arcmin

LiteBIRD collaboration PTEP 2023

第1段エンジン LE-9

First Stage Engine LE-9

H3-32L

re BIRO

- Lite (Light) spacecraft for the study of *B*-mode polarization and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission was selected in May 2019 to be launched by JAXA's H3 rocket
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 15 bands) at 70–18 arcmin angular resolution for precision measurements of the CMB *B* modes
- Final combined sensitivity: 2.2 µK·arcmin

LiteBIRD collaboration PTEP 2023

- Lite (Light) spacecraft for the study of <u>B-mode polarization</u> and Inflation from cosmic background Radiation Detection
- JAXA's L-class mission was selected in May 2019 to be launched by JAXA's H3 rocket
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 15 bands) at 70–18 arcmin angular resolution for precision measurements of the CMB B modes
- Final combined sensitivity: 2.2 µK·arcmin

LiteBIRD collaboration PTEP 2023

First Stage Engine LE-9

re BIRD

- Lite (Light) spacecraft for the study of <u>B-mode polarization</u> and <u>Inflation</u> from <u>cosmic background Radiation</u> Detection
- JAXA's L-class mission was selected in May 2019 to be launched by JAXA's H3 rocket
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 15 bands) at 70–18 arcmin angular resolution for precision measurements of the CMB *B* modes
- Final combined sensitivity: 2.2 µK·arcmin

LiteBIRD collaboration PTEP 2023

re BIRD

- Lite (Light) spacecraft for the study of <u>B-mode polarization</u> and <u>Inflation</u> from <u>cosmic background Radiation</u> Detection
- JAXA's L-class mission was selected in May 2019 to be launched by JAXA's H3 rocket
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- Large frequency coverage (40–402 GHz, 15 bands) at 70–18 arcmin angular resolution for precision measurements of the CMB *B* modes
- Final combined sensitivity: 2.2 µK·arcmin

Ongoing rescope studies (~ late 2025) to consolidate the mission's feasibility while keeping the same scientific objectives

LiteBIRD scanning strategy

Why B modes (1/2)

kek.org

Why B modes (2/2)

15.08.2025

Perturbations imprint anisotropies in the temperature and polarization of the CMB

LiteBIRD main scientific objectives

reBIRO

- Definitive search for the *B*-mode signal from cosmic inflation in the CMB polarization
 - Making a discovery or ruling out wellmotivated inflationary models
 - Insight into the quantum nature of gravity
- The inflationary (i.e. primordial) *B*-mode power is proportional to the tensor-to-scalar ratio, *r*
- Current best constraint: r < 0.032 (95% C.L.) (Tristram et al. 2022, combining BK18 and Planck PR4)
- LiteBIRD will significantly improve the current sensitivity on r
- The final goal is to achieve a total uncertainty of $\delta r \lesssim 0.001$ for r=0

LiteBIRD constraints on inflation

- Huge discovery impact (evidence for inflation, knowledge of its energy scale, and distance traveled by the inflaton...)
- A detection of B-modes by LiteBIRD with r > 0.01 would imply an excursion of the inflation field that exceeds the Planck mass
 - Such a detection would constrain theories of quantum gravity such as superstring theories
- An upper limit from LiteBIRD would disfavour the simplest inflationary models, with $M > M_p$
 - This includes the monomial models, α-attractors with a super-Planckian characteristic scale, including the **Starobinsky model** and models that invoke the Higgs field as the inflaton

 $n_{\rm S}$

- The mission specifications are driven by the required sensitivity on r
- Meeting those sensitivity requirements would allow to address other important scientific topics, such as:
 - 1. Characterize the *B*-mode power spectrum and search for source fields (e.g. scale-invariance, non-Gaussianity, parity violation, ...)
 - 2. Power spectrum features in polarization
 - Large-scale *E*-modes
 - Reionization (improve $\sigma(\tau)$ by a factor of 3)
 - Neutrino mass $(\sigma(\sum m_{\nu}) = 12 \text{ meV})$
 - 3. Constraints on cosmic birefringence
 - 4. Gravitational lensing
 - 5. SZ effect (thermal, diffuse, relativistic corrections)
 - 6. Anisotropic distortions of the CMB spectrum
 - 7. Constraints on primordial magnetic fields
 - 8. Elucidating anomalies
 - 9. Physics of Galactic emission mechanisms
 - 10. Catalogues of polarized point sources

8

LiteBIRD collaboration

The challenge of B-modes detection

- The *B*-mode signal is expected to have an amplitude at least 3 orders of magnitude below the CMB temperature anisotropies
- *LiteBIRD* is targeting a sensitivity level in polarization ~30 times better than Planck
- This extremely good statistical uncertainty must go in parallel with exquisite control of:
 - 1. Instrument systematic uncertainties
 - 2. Galactic foreground contamination
 - 3. "Lensing B-mode signal" induced by gravitational lensing
 - 4. Observer biases

Image credit: Josquin Errard

The challenge of B-modes detection

Impact of foreground residual

Impact of systematic effects

These residuals were obtained assuming an half-wave plate (HWP) as polarization modulator! Why is this important?

- 1/*f* noise,
- pair-differencing systematics,
- beam asymmetries

- 1/*f* noise,
- pair-differencing systematics,
- beam asymmetries

- 1/*f* noise,
- pair-differencing systematics,
- beam asymmetries

A rotating (ideal) HWP modulates the intrinsic polarized signal at $4f_{\text{HWP}}$, and can help to control systematic effects:

• 1/*f* noise,

15.08.2025

- pair-differencing systematics,
- beam asymmetries

- 1/*f* noise,
- pair-differencing systematics,
- beam asymmetries

- 1/*f* noise,
- pair-differencing systematics,
- beam asymmetries

- 1/*f* noise,
- pair-differencing systematics,
- beam asymmetries

A rotating (ideal) HWP modulates the intrinsic polarized signal at $4f_{\text{HWP}}$, and can help to control systematic effects:

• 1/*f* noise,

15.08.2025

- pair-differencing systematics,
- beam asymmetries

- 1/*f* noise,
- pair-differencing systematics,
- beam asymmetries

LiteBIRD reformation phase

- Rescope studies: consolidate the mission's feasibility while keeping the same scientific objectives
 - Revisit the error budget
 - Simplify the mission configuration (one single telescope instead of three; try to use existing technologies as much as possible)
 - Simplify the cryogenic chain
- The collaboration will spend approximately one year (~ late 2025) on the studies of the reformation plan
 - Two different configuration options now being considered, both based on single Crossed-Dragone reflective telescope
 - Option 1 (no HWP) requires a faster spin rate to minimize 1/f noise
 - Option 2 is based on the possibility of using a wider-band HWP

Option 1

- Aperture 500 m
- 40-570 GHz
- No HWP
- Spin rate 0.3 rpm

Option 2

- Aperture 500 m
- 40-402 GHz
- Transmissive HWP
- Spin rate 0.05 rpm

15.08.2025 21st Recontres du Vietnam

LiteBIRD reformation phase

- Rescope studies: consolidate the mission's feasibility while keeping the same scientific objectives
 - Revisit the error budget
 - Simplify the mission configuration (one single telescope instead of three; try to use existing technologies as much as possible)
 - Simplify the cryogenic chain
- The collaboration will spend approximately one year (~ late 2025) on the studies of the reformation plan
- Two different configuration options now being considered, both based on single Crossed-Dragone reflective telescope
- Option 1 (no HWP) requires a faster spin rate to minimize 1/f noise
- Option 2 is based on the possibility of using a wider-band HWP

• Aperture 500 m

• 40-570 GHz

No HWP

• Spin rate 0.3 rpm

- Aperture 500 m
- 40-402 GHz
- Transmissive HWP
- Spin rate 0.05 rpm

15.08.2025
21st Recontres du Vietnam

Main systematic effects

Option 2

- Aperture 500 m
- 40-402 GHz
- Transmissive HWP
- Spin rate 0.05 rpm
- HWP non-idealities (multiplicative)
- Additive effects (1*f*, 2*f*, ...)
- Detector non-linearities
- •

Both options:

- Far side lobes
- Bandpass
- Polarization angle
- Gain
- •

Option 1

- Aperture 500 m
- 40-570 GHz
- No HWP
- Spin rate 0.3 rpm

- 1/f noise
- Beam asymmetries
- Pair-differencing systematics (beam, bandpass, ...)
- •

Main systematic effects

Option 2

- Aperture 500 m
- 40-402 GHz
- Transmissive HWP
- Spin rate 0.05 rpm
- HWP non-idealities (multiplicative)
- Additive effects (1*f*, 2*f*, ...)
- Detector non-linearities

Option 1

- **Both options:**
- Far side lobes
- Bandpass
- Polarization angle
- Gain

- Aperture 500 m
- 40-570 GHz
- No HWP
- Spin rate 0.3 rpm

- 1/f noise
- Beam asymmetries
- Pair-differencing systematics (beam, bandpass, ...)

HWP non-idealities

The effect of the HWP can be encoded in a Mueller matrix (acting on Stokes vectors)

$$\mathcal{M}_{\mathsf{HWP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

HWP non-idealities

The effect of the HWP can be encoded in a **Mueller matrix** (acting on Stokes vectors)

The peak at 2f seems far enough from the science band. Still, monopole and dipole leak in pol. maps!

Monelli et al, in prep

ngoing:

- Characterization: quantify *I-P* leakage induced by 2*f* term by realistic HWP
- Requirements: propagate to r, to derive requirements on the HWP non-idealities
- Mitigation: implement both notch-filtering and fitting to clean the signal, compare
- Generalization: include additive effects (1f, 2f, ...), non-linearities, 1/f, ...

Main systematic effects

Option 2

- Aperture 500 m
- 40-402 GHz
- Transmissive HWP
- Spin rate 0.05 rpm

- HWP non-idealities (multiplicative)
- Additive effects (1*f*, 2*f*, ...)
- Detector non-linearities
- •

- Crucial to guide design
 (HWP speed, specifics)
- Mitigation strategies needed!

Both options:

• Polarization angle

• Far side lobes

Bandpass

- Gain
- •

Option 1

- Aperture 500 m
- 40-570 GHz
- No HWP
- Spin rate 0.3 rpm

- 1/*f* noise
- Beam asymmetries
- Pair-differencing systematics (beam, bandpass, ...)
- •

1/f noise

$$P(f) = \sigma^2 \left[1 + \left(\frac{f_{\text{knee}}}{f} \right)^{\alpha} \right]$$

$$N_{\ell}^{BB}(A, \ell_{\text{knee}}, \beta) = A \left[1 + \left(\frac{\ell_{\text{knee}}}{\ell} \right)^{\beta} \right]$$

Mostly affecting large scales: problematic for the detection of primordial *B* modes!

Monelli et al, in prep

ngoing:

- Characterization: derive relation between multipole and frequency space parameters (scan dependent)
- Requirements: propagate to r, to derive requirements on the instrumental noise parameters
- Mitigation: develop and implement TOD-inpainting at the map-making level
- Application: comparative study between LiteBIRD-, Planck- and PICO-like configurations

1/f noise

ngoing:

- Characterization: derive relation between multipole and frequency space parameters (scan dependent)
- Requirements: propagate to r, to derive requirements on the instrumental noise parameters
- Mitigation: develop and implement TOD-inpainting at the map-making level
- Application: comparative study between LiteBIRD-, Planck- and PICO-like configurations

Main systematic effects

Option 2

- Aperture 500 m
- 40-402 GHz
- Transmissive HWP
- Spin rate 0.05 rpm

- HWP non-idealities (multiplicative)
- Additive effects (1*f*, 2*f*, ...)
- Detector non-linearities
- •

- Crucial to guide design
 (HWP speed, specifics)
- Mitigation strategies needed!

Both options:

• Polarization angle

• Far side lobes

Bandpass

- Gain

Option 1

- Aperture 500 m
- 40-570 GHz
- No HWP
- Spin rate 0.3 rpm

- 1/f noise
- Beam asymmetries
- Pair-differencing systematics (beam, bandpass, ...)
- •

- Crucial to guide design (instr. noise parameters)
- Mitigation strategies needed!

Summing up

- LiteBIRD will measure CMB polarization with unprecedented sensitivity
- Huge discovery impact (inflation and other science)
- Ongoing rescope studies: simpler configuration, same scientific objectives
- Understanding systematic effects and develop mitigation strategies is crucial at this stage!
- Two of the main ones w/ and w/out HWP:
 - HWP non-idealities (multiplicative): *I-P* leakage especially problematic
 - 1/f noise: affects very large scales (high sensitivity to primordial B modes)
 - Crucial to guide design choices
 - Mitigation strategies needed!