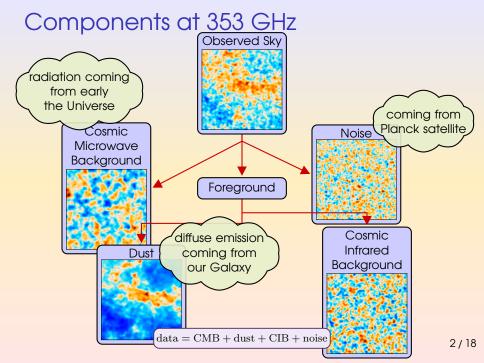
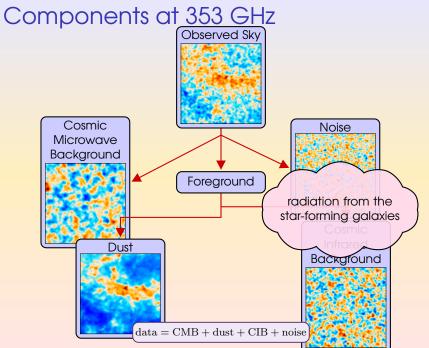
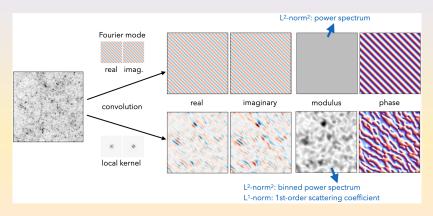
Untangling dust and CIB emission in Planck 353 GHz observation with Scattering Coefficients


Srijita Sinha


NISER, India
Rencontres du Vietnam, Cosmology, ICISE

Aug 15, 2025

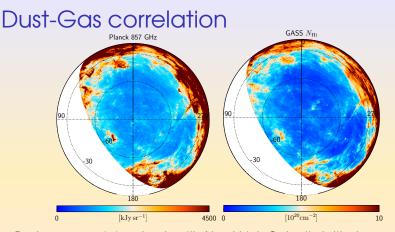


Scattering Transform

(S. Mallat 2012)

Goal: From a CMB-subtracted data separate dust & CIB+noise using Scattering Transform

Scattering Coefficients


(S. Cheng et al., PNAS Nexus 2024, L. Mousset et al., A&A 2024)

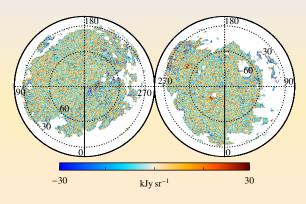
The scattering coefficients are computed with a non-linear operations on a random field (X) with a set of pre-computed wavelet filters $(\psi^{j,\gamma})$ at different scales and orientations $\lambda=(j,\gamma)$

- $\gt S_1^{\lambda_1} = \left< \left| X * \psi^{\lambda_1} \right| \right> \Rightarrow \text{interactions at same scale}$
- $ightharpoonup S_2^{\lambda_1} = \left\langle \left| X * \psi^{\lambda_1} \right|^2
 ight
 angle \Rightarrow ext{interactions at same scale}$
- > $S_3^{\lambda_1,\lambda_2} = \text{Cov}(X*\psi^{\lambda_1}, |X*\psi^{\lambda_2}|*\psi^{\lambda_1}) \Rightarrow \text{interactions between scales}$
- > $S_4^{\lambda_1,\lambda_2,\lambda_3} = \text{Cov}(\left|X*\psi_3^{\lambda}\right|*\psi_1^{\lambda},\left|X*\psi_2^{\lambda}\right|*\psi_1^{\lambda}) \Rightarrow \text{interactions}$ between scales
- ➤ Summary statistics $\Rightarrow \Phi \equiv (S_1, S_2, S_3, S_4)$

Methodology

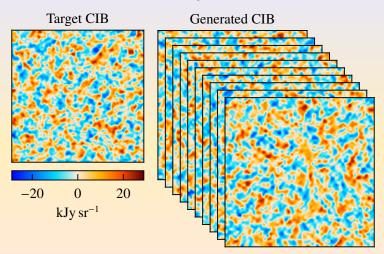
- ➤ CIB is statistically isotropic → learn the statistical properties of CIB and use that to separate the dust and CIB
- Take a data patch at high neutral atomic hydrogen (HI) column density region (NHI)
- Define a some loss functions £ defining the statistical correlation between the componenets
- Minimising the loss function arrive at the dust map

- Dust map correlates closely with N_{HI} at high Galactic latitudes (F. Boulanger et al., A&A 1996)
- > We used the low-velocity (LV, $|v_{LSR}| < 30 \, {\rm km s}^{-1}$) and intermediate-velocity (IV, $30 \, {\rm km s}^{-1} < |v_{LSR}| < 90 \, {\rm km s}^{-1}$) HI maps as the tracer for dust at low column density regions

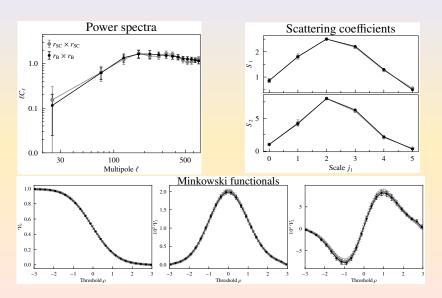

How to obtain clean CIB map?

- ightharpoonup CMB subtracted maps are modelled $ightharpoonup m = \underbrace{s}_{ ext{dust signal residual emission}} + \underbrace{r}_{ ext{residual emission}}$
- Estimate the probability distribution of the parameters Θ of a model
 M for the given dataset D

$$\boxed{\frac{\rho(\Theta|\mathbf{D},\mathbf{M})}{\rho(\mathbf{D}|\mathbf{M})} = \frac{\boxed{\rho(\mathbf{D}|\Theta,\mathbf{M})} \boxed{\rho(\Theta|\mathbf{M})}}{\boxed{\rho(\mathbf{D}|\mathbf{M})}}$$


- ▶ $\mathbf{D} \equiv m$, $\Theta \equiv \{\epsilon, O\}$ and $\mathbf{M} \equiv s$
- ▶ Dust is modelled with H_I map \rightarrow $s = \epsilon H_I + O$, $\epsilon \Rightarrow$ emissivity, $O \Rightarrow$ offset
- ► Likelihood $\longrightarrow \mathcal{L}(m|\{\epsilon,O\}) \propto e^{-\chi^2/2}$ where $\chi^2 = (m-s)^{\mathsf{T}} \Sigma^{-1}(m-s)$
- $ightharpoonup \Sigma \equiv \Sigma^{CIB} + \Sigma^{N} \Rightarrow Covariance Matrix of residual emission$
- CIB anisotropies have a correlation between two pixels
- > Sampled ϵ at each pixels & O globally using Hamiltonian Monte Carlo (HMC) sampling formalism (D. Adak et al., MNRAS 2024)

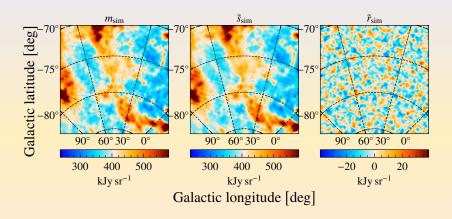
How to obtain clean CIB map?


- With iterative fitting approach obtained a mask with $f_{\rm sky} = 0.33$
- From HMC we obtain the dust model s_B and the residual $r_B = (m s_B)$
- > Extract 25 clean CIB square regions (15° × 15°) from the North and South Galactic pole

Synthesise a CIB map

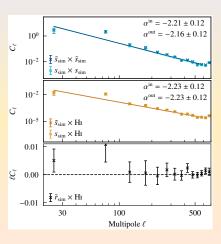
- > Starting from an initial random image
- > Compute the Φ and minimise the difference between target and initial image $\Rightarrow \mathcal{L} = \|\Phi(\mathrm{in}) \Phi(\mathrm{out})\|^2$

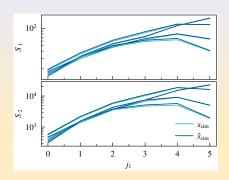
Summary Statistics


Loss definitions

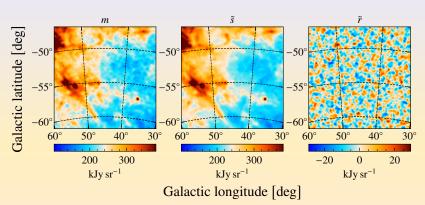
- ► $(\Phi(m) \simeq \langle \Phi(s + c_i + n_i) \rangle_{i \in N})$ \Rightarrow statistics of dust+CIB+noise matches the total map
- $(\Phi(\mathsf{Hi},m) \simeq \langle \Phi(\mathsf{Hi},s+c_i+n_i) \rangle_{i \in N}) \Rightarrow \text{dust and Hi are correlated}$
- $(\Phi(H\alpha, m-s) \simeq \langle \Phi(H\alpha, c_i + n_i) \rangle_{i \in \mathbb{N}}) \Rightarrow CIB + \text{noise are uncorrelated to } H\alpha$

Validation on simulation

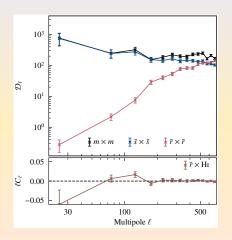

- ➤ Interstellar reddening map E(B-V) at low H_I column denisity (D. Lenz *et al.*, APJ 2017)
- ightharpoonup Scale the dust with κ such that $\mathit{SNR} = \frac{\sigma_{\kappa E(B-V)}}{\sigma_{r_{\mathrm{sim}}}}$
- $> s_{\text{sim}} = \kappa E(B V) + O$
- ightharpoonup Made the data map $m_{
 m sim} = s_{
 m sim} + r_{
 m sim}$
- Verified the algorithm for SNR = 3 to 9


Recovered dust and CIB+noise

> Simulated map $m_{\rm sim} = \tilde{s}_{\rm sim} + \tilde{r}_{\rm sim}$, where $\tilde{s}_{\rm sim} \equiv$ recovered dust signal, $\tilde{r}_{\rm sim} = (m_{\rm sim} - \tilde{s}_{\rm sim}) \equiv$ recovered CIB+noise

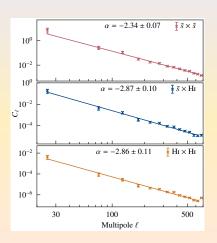

Recovered statistics

- ightharpoonup Recovered the dust map ($ilde{s}_{
 m sim}$)
- Recovered the dust-Hi correlation
- Recovered the scattering statistics


From Planck 353 GHz

- ➤ Centered around the Galactic longitude and latitude (I, b) = (45°, -54.3°) with SNR \approx 5, and mean H_I column density $\langle N_{\rm HI}^{\rm IV+LV} \rangle = 3.3 \times 10^{20} \, {\rm cm}^{-2}$
- ▶ Data map $m = \tilde{s} + \tilde{r}$, where $\tilde{s} \equiv$ recovered dust signal, $\tilde{r} \equiv$ recovered CIB+noise

Results**


- \triangleright \tilde{s} at large scales is recovered
- \triangleright \tilde{r} at small scales is recovered
- \triangleright \tilde{r} is uncorrelated with H_I

^{16 / 18}

Results**

- The difference in the power-law exponent value between $\alpha_{\tilde{s} \times \tilde{s}}$ and $\alpha_{\text{H} \times \text{H} \text{I}}$ indicates that the dust ϵ is not constant and varies with a power-law exponent which is different from the HI auto spectrum
- We tried in other column density regions and obtain that a constant emissivity cannot explain this in all regions

Summarise

- SC recovers the dust map where the dust intensity is higher than the CIB and noise
- At low column density, dust-HI tight correlation holds, and both template-fitting and SC gives consistent results
- ➤ At regions with other Galactic emissions in addition to the 21 cm Hı, the SC can recover the dust emission
- A variable emissivity can explain the difference in exponent in the dust-Hi correlation
- Obtaining a full maps are the next target

Thank You