Secondary Gravitational wave as a new window to the early universe

LianTao Wang Univ. of Chicago

Work in collaboration with

Reza Ebadi, Soubhik Kumar, Amara McCune, Hanwen Tai, LTW, 2307.12048 Soubhik Kumar, Hanwen Tai, LTW, 2410.17291

21st Rencontres du Vietnam, Cosmology, ICISE, August 14, 2025

Inflationary era

Early universe

Primary GW

Early universe

Secondary GW

In addition to the inflaton, many other fields have quantum fluctuations

Example: secondary GW

Baumann, Steinhardt, Takahashi, hep-th/0703290

Modes enter horizon during RD, starts oscillate, and generates GW

Curvature perturbation Φ

$$ds^{2} = -(1+2\Phi) dt^{2} + a^{2} \left((1-2\Phi) \delta_{ij} + \frac{1}{2} h_{ij} \right) dx^{i} dx^{j}$$

Curvature perturbation Φ

$$ds^{2} = -(1+2\Phi) dt^{2} + a^{2} \left((1-2\Phi) \delta_{ij} + \frac{1}{2} h_{ij} \right) dx^{i} dx^{j}$$

Einstein equation:

$$h'' + 2Hh' + k^2h = \Phi \partial^2 \Phi + \dots$$
 Curvature source GW

Curvature perturbation Φ

$$ds^{2} = -(1+2\Phi) dt^{2} + a^{2} \left((1-2\Phi) \delta_{ij} + \frac{1}{2} h_{ij} \right) dx^{i} dx^{j}$$

Einstein equation:

$$h'' + 2Hh' + k^2h = \Phi \partial^2 \Phi + \dots$$
 Curvature source GW

Gravitational wave abundance:

$$\Omega_{\rm gw} \propto (\dot{h})^2 \propto \Phi^4 \sim \Omega_{\rm rad} P_\zeta^2$$

On large (CMB, LSS) scales: $\Omega_{\rm rad} \sim 10^{-5}$, $P_{\rm c} \sim 10^{-9}$

Curvature perturbation Φ

$$ds^{2} = -(1+2\Phi) dt^{2} + a^{2} \left((1-2\Phi) \delta_{ij} + \frac{1}{2} h_{ij} \right) dx^{i} dx^{j}$$

Einstein equation:

$$h'' + 2Hh' + k^2h = \Phi \partial^2 \Phi + \dots$$
 Curvature source GW

Gravitational wave abundance:

$$\Omega_{\rm gw} \propto (\dot{h})^2 \propto \Phi^4 \sim \Omega_{\rm rad} P_\zeta^2$$

On large (CMB, LSS) scales: $\Omega_{\rm rad} \sim 10^{-5}$, $P_{\rm c} \sim 10^{-9}$

Clearly, to have observable signal, need much larger curvature perturbation on smaller scales (blue tilted).

Stories of blue spectrum

1. A spectator light scalar

R. Ebadi, S. Kumar, A. McCune, H. Tai, LTW 2023

$$\mathcal{L} = \frac{1}{2}(\partial\sigma)^2 - \frac{1}{2}m^2\sigma^2 - \frac{\lambda}{4}\sigma^4$$

with m < H

The spectrum of its fluctuation on large scales can be studied by stochastic method

Starobinsky and Yokoyama, 1994

Fokker-Planck
$$\frac{\partial P_{\mathrm{FP}}(t,\sigma)}{\partial t} = \left(\frac{V''(\sigma)}{3H} + \frac{V'(\sigma)}{3H} \frac{\partial}{\partial \sigma} + \frac{H^3}{8\pi^2} \frac{\partial^2}{\partial^2 \sigma}\right) P_{\mathrm{FP}}(t,\sigma)$$

 $P_{\rm FP}(t,\sigma)$: 1-pt PDF for field σ

The spectrum of its fluctuation on large scales can be studied by stochastic method

Starobinsky and Yokoyama, 1994

Fokker-Planck

$$\frac{\partial P_{\text{FP}}(t,\sigma)}{\partial t} = \left(\frac{V''(\sigma)}{3H} + \frac{V'(\sigma)}{3H} \frac{\partial}{\partial \sigma} + \frac{H^3}{8\pi^2} \frac{\partial^2}{\partial^2 \sigma}\right) P_{\text{FP}}(t,\sigma)$$

Classical evolution, drift

$$P_{\mathrm{FP}}(t,\sigma)$$
: 1-pt PDF

The spectrum of its fluctuation on large scales can be studied by stochastic method

Starobinsky and Yokoyama, 1994

Fokker-Planck

$$\frac{\partial P_{\text{FP}}(t,\sigma)}{\partial t} = \left(\frac{V''(\sigma)}{3H} + \frac{V'(\sigma)}{3H} \frac{\partial}{\partial \sigma} + \frac{H^3}{8\pi^2} \frac{\partial^2}{\partial^2 \sigma}\right) P_{\text{FP}}(t,\sigma)$$

Classical evolution, drift

Stochastic, diffusion

$$P_{\text{FP}}(t, \sigma)$$
: 1-pt PDF

The spectrum of its fluctuation on large scales can be studied by stochastic method

Starobinsky and Yokoyama, 1994

Fokker-Planck

$$\frac{\partial P_{\text{FP}}(t,\sigma)}{\partial t} = \left(\frac{V''(\sigma)}{3H} + \frac{V'(\sigma)}{3H} \frac{\partial}{\partial \sigma} + \frac{H^3}{8\pi^2} \frac{\partial^2}{\partial^2 \sigma}\right) P_{\text{FP}}(t,\sigma)$$

Classical evolution, drift

Stochastic, diffusion

 $P_{\mathrm{FP}}(t,\sigma)$: 1-pt PDF

Evolution of fluctuations: small vs large scales

$$m_{\sigma}^2 < H^2$$

- 1. Massless. "Stuck" at large field value.
 - * Example: misaligned axion.
- 2. Massive but light.

Massive but light. (Free field for simplicity)

$$\dot{\sigma} = -\frac{m_{\sigma}^2 \sigma}{3H} \rightarrow \sigma = \exp\left(-m_{\sigma}^2 \int_0^t \frac{dt'}{3H(t')}\right) \cdot \sigma_i \quad \text{Initial field value}$$

* Massive but light. (Free field for simplicity)

$$\dot{\sigma} = -\frac{m_{\sigma}^2 \sigma}{3H} \rightarrow \sigma = \exp\left(-m_{\sigma}^2 \int_0^t \frac{dt'}{3H(t')}\right) \cdot \sigma_i \quad \text{Initial field value}$$

* Roughly,
$$-\int_{0}^{t} \frac{dt'}{3H(t')} \sim \frac{1}{\dot{H}}$$

* Massive but light. (Free field for simplicity)

$$\dot{\sigma} = -\frac{m_{\sigma}^2 \sigma}{3H} \rightarrow \sigma = \exp\left(-m_{\sigma}^2 \int_0^t \frac{dt'}{3H(t')}\right) \cdot \sigma_i \quad \text{Initial field value}$$

* Roughly,
$$-\int_{0}^{t} \frac{dt'}{3H(t')} \sim \frac{1}{\dot{H}}$$

* If
$$m_{\sigma}^2 > \epsilon H^2$$
 ($\epsilon = \dot{H}/H^2$),

* Initial value of field does not matter. Amplitude of field dominated by stochastic fluctuation around origin

A spectator light scalar

R. Ebadi, S. Kumar, A. McCune, H. Tai, LTW 2023

$$\mathcal{L} = \frac{1}{2}(\partial\sigma)^2 - \frac{1}{2}m^2\sigma^2 - \frac{\lambda}{4}\sigma^4 \qquad \text{with } m < H$$

$$\mathcal{P}_f(k) = \sum_n \frac{2}{\pi} f_n^2 \Gamma\left(2 - 2\frac{\Lambda_n}{H}\right) \sin\left(\frac{\Lambda_n \pi}{H}\right) \left(\frac{k}{H}\right)^{2\Lambda_n/H} \qquad \to \mathcal{A}\left(\frac{k}{H}\right)^{\frac{2\Lambda_{\text{lowest}}}{H}} \text{ for } k \ll H$$

Starobinsky and Yokoyama, 1994; Markkanen, Rajantie, Stopyra, Tenkanen, 1904.11917

Blue tilt

At horizon exit: Amplitude ≈ H

After exit, damping

$$\dot{\sigma} = -\frac{m_{\sigma}^2 \sigma}{3H}$$

Blue tilt

At horizon exit: Amplitude ≈ H

After exit, damping

$$\dot{\sigma} = -\frac{m_{\sigma}^2 \sigma}{3H}$$

$$\sigma_k(t) = \sigma(t_*) \exp\left(-\frac{m_\sigma^2}{3H}(t - t_*)\right) = \sigma(t_*) \left[\exp\left(-H(t - t_*)\right)\right]^{\frac{m_\sigma^2}{3H^2}} = \sigma(t_*) \left[\frac{k(t)}{H}\right]^{\frac{m_\sigma^2}{3H^2}}$$

More damping for longer wave-length (earlier exit)

Blue tilt

At horizon exit: Amplitude ≈ H

After exit, damping

$$\dot{\sigma} = -\frac{m_{\sigma}^2 \sigma}{3H}$$

For more general scalar theory

$$\mathcal{P}_f(k) = \sum_n \frac{2}{\pi} f_n^2 \Gamma\left(2 - 2\frac{\Lambda_n}{H}\right) \sin\left(\frac{\Lambda_n \pi}{H}\right) \left(\frac{k}{H}\right)^{2\Lambda_n/H} \qquad \to \mathcal{A}\left(\frac{k}{H}\right)^{\frac{2\Lambda_{\text{lowest}}}{H}} \text{ for } k \ll H$$

After inflation

Eventually, evolve like matter

Can become important

After inflation

Eventually, evolve like matter

Can become important

$$\Delta_{\zeta}^{2}(k) = \begin{cases} \Delta_{\zeta_{r}}^{2}(k) + \left(\frac{f_{\sigma}(t_{d})}{4+3f_{\sigma}(t_{d})}\right)^{2} \Delta_{S_{\sigma}}^{2}(k), & k < k_{d}, \\ \Delta_{\zeta_{r}}^{2}(k) + \left(\frac{f_{\sigma}(t_{d})(k_{d}/k)}{4+3f_{\sigma}(t_{d})(k_{d}/k)}\right)^{2} \Delta_{S_{\sigma}}^{2}(k), & k > k_{d} \end{cases}$$

Power spectrum

Reza Ebadi, Soubhik Kumar, Amara McCune, Hanwen Tai, LTW, 2307.12048

Assuming the scalar behave similar to curvaton. Becoming important before decay.

Assumption: scalar field does not dominate (more later)

Power spectrum

Reza Ebadi, Soubhik Kumar, Amara McCune, Hanwen Tai, LTW, 2307.12048

Assuming the scalar behave similar to curvaton. Becoming important before decay.

Gravitational wave

Reza Ebadi, Soubhik Kumar, Amara McCune, Hanwen Tai, LTW, 2307.12048

More general scenario

Soubhik Kumar, Hanwen Tai, LTW, 2410.17291

More generally, can consider the case scalar perturbation dominates (curvaton-like).

Larger signal, interesting spectral shape.

To treat this properly, much care is needed, numerically challenging.

2. Complex scalar

Soubhik Kumar, Hanwen Tai, LTW, 2410.17291

Complex scalar

$$\mathcal{L} \supset \frac{1}{2} (\partial_{\mu} s)^2 + \frac{1}{2} s^2 (\partial_{\mu} \theta)^2 - \lambda_{\Phi} (s^2 - f_a^2)^2 / 4 + \frac{1}{2} m^2 s^2 \theta^2.$$

Rolling radial mode

Soubhik Kumar, Hanwen Tai, LTW, 2410.17291

$$\mathcal{L} \supset \frac{1}{2} (\partial_{\mu} s)^2 + \frac{1}{2} s^2 (\partial_{\mu} \theta)^2 - \lambda_{\Phi} (s^2 - f_a^2)^2 / 4 + \frac{1}{2} m^2 s^2 \theta^2.$$

Fluctuations

Soubhik Kumar, Hanwen Tai, LTW, 2410.17291

Fluctuation becomes larger as radial mode rolling down

Perturbation spectrum

Complex scalar

Steeper blue tilt than the previous case

GW prediction

Complex scalar

Another benchmark

$$\chi_{0,\mathrm{end}} = f_a = 0.6H, H = 1.9 \times 10^{12} \text{ GeV}, m = 0.05H, \lambda_{\Phi} = 0.75$$

N	$k_{\rm end} [{ m Mpc}^{-1}]$	$k_{\rm EMD} [{ m Mpc}^{-1}]$	$k_{\rm d} [{\rm Mpc}^{-1}]$
59.2	1.18×10^{22}	3.14×10^{8}	4.0×10^{7}

3. GW from Rotating axion

A. Bodas, K. Harigaya, K. Inomata, T. Terada, LTW 2508.08249

Evolution and GW

A. Bodas, K. Harigaya, K. Inomata, T. Terada, LTW 2508.08249

Fluctuation in axion field leads to secondary GW. GW produced during eMD and MK transition (short wavelength)

GW from Rotating axion

A. Bodas, K. Harigaya, K. Inomata, T. Terada, LTW 2508.08249

Conclusions

- * We are at the beginning of a new era, gravitational wave as a new window to early universe.
- * More observations of stochastic gravitational wave in the coming decades.
- * Can reveal important dynamics in the early universe
- * I focused on the question of new dynamics during inflation:
 - * Blue spectrum of fluctuations → secondary GW
- * A fast advancing field with many opportunities.

Beginnings of exciting times

E. Lawrence

LBNL

A. Penzias and R. Wilson

AP