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3. ANALYTICAL DESCRIPTION OF THE SPECTRUM

In this section we estimate the complete spectrum of scalar-induced gravitational waves analytically. To simplify
the analysis we neglect anisotropic stress and set Ψ = Φ. In section 4 we evaluate the exact spectrum numerically
including anisotropic stress and show that this gives only a small correction. With Ψ = Φ, the source term of the
equation of motion (18) can be expressed solely by the Bardeen potential Φ,

h′′
k + 2Hh′

k + k2hk = S(Φ(kη)) , (35)

and f(k, k̃, η) in equation (28) is expressed by a single transfer function Φ,

3(1 + w)

4
f(k, k̃, η) = 2(5 + 3w)Φ(|k − k̃|η)Φ(|k̃|η) + 4

(

2ηΦ(|k − k̃|η) + η2Φ′(|k − k̃|η)
)

Φ′(|k̃|η) . (36)

In Appendix B we show that the transfer function for first-order scalar modes can be written in the following form

Φ(kη) =

{

1
1+k2η2 η < ηeq

1
1+k2η2

eq
η > ηeq

(37)
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FIG. 2: Evolution of scalar source and induced gravitational waves. Second-order tensors, h, are generated when the
mode k enters the horizon at ak. If horizon entry occurs during the radiation dominated era, then the scalar source decays as
a−γ until matter-radiation equality, aeq. During matter domination the scalar source terms remains at a constant value, S(f).
Gravitational waves redshift like a−1 as long as h > S

(f)/k2, but remain at a constant amplitude maintained by the constant
source term after that, a > a∗

k.

To study the generation of h induced by S we make the approximation that gravitational waves are produced
instantaneously when the relevant mode enters the horizon. The subsequent evolution of the tensor mode is scale-
dependent and determined by the time evolution of the scalar source term (see Figure 2). Scalar-induced gravitational
waves redshift as long as their magnitude is greater than S/k2. After that they freeze at a constant value maintained
by the constant source term during matter domination. We define the transfer function for scalar-induced gravitational
waves, t(k, η), as follows

hk(η) ≡ t(k, η)h(i)
k , (38)

where h(i)
k is the value of hk just after the instantaneous generation of gravitational waves after horizon entry (see

Figure 2). We estimate h(i)
k by dropping time derivatives in the equation of motion (35) (since kη > 1 after horizon

entry)

h(i)
k ∼ 1

k2
S(i) . (39)

Baumann, Steinhardt, Takahashi, hep-th/0703290
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Figure 4. (a) The kernel function from eq. (74). We note a
clear resonance contribution from t ' 0.7 corresponding to
u + v '

p
3. (b) The transfer function T�. (c) Function

f(p, q, ⌧) as in eq. (69). We see that for the scalar modes
that enter the horizon earlier, with p, q > k, this function is
more suppressed as expected from the behavior of the transfer
function.

With these expressions, we can obtain a physical un-
derstanding of GW generation via eq. (70). The Green
function, given in eq. (76), is an oscillatory function of
time whose frequency is k. The quantity f(p, q, ⌧) is
also an oscillatory and decaying function of time (see
fig. 4c), inheriting these properties from the transfer func-
tion (75). Therefore, the dominant contribution to the
integral (68) is a resonant contribution when the mo-
mentum of the produced GW is of the same order as the
momentum of the scalar modes, i.e., k ⇠ p ⇠ q. In par-
ticular, the resonant point is at u+v '

p
3 [54] as shown

in fig. 4a. GW generation is suppressed in other parts
of the phase space. For example, the source term, which
contains gradients of the curvature perturbation [53], is
suppressed by small derivatives if any of the wavenumbers
p, q of ⇣ is much smaller than k. On the other hand, if
p, q are much larger than k, then the scalar modes would
have decayed significantly after entering the horizon by
the time k ⇠ H, and thus the production of GW with
momentum k gets suppressed.

To obtain the final result for ⌦GW, we note that the
GW comoving wavenumber k is related to the present-
day, redshifted frequency f of the generated GW via

f = f⇤

✓
a⇤
a0

◆
=

k

2⇡
' 1.5 mHz

✓
k

1012 Mpc�1

◆
, (77)

where f⇤ and a⇤ are respectively the frequency and the
scale factor at the time of GW generation. Using these

expressions, we arrive at our final result, shown in Fig. 5,
for the same benchmark choices discussed in Fig. 3. We
see that stochastic e↵ects can naturally give rise to a large
enough SGWB, within the sensitivity range of DECIGO,
BBO, µ-Ares, and Ultimate DECIGO [60–62].

VI. CONCLUSION

In this work, we have discussed an early Universe sce-
nario containing a light spectator field, along with an in-
flaton field. The fluctuations of the inflaton are red-tilted
and explain the observed fluctuations in the CMB and
LSS. On the other hand, the spectator field � naturally
acquires a blue-tilted power spectrum. This blue-tilted
power spectrum is eventually cut-o↵ at very small scales
since when such small-scale modes enter the horizon, the
spectator field contributes subdominantly to the total en-
ergy density. As a consequence, primordial black holes
are not produced in this scenario. Overall, this mecha-
nism of generating a blue-tilted spectrum works for any
generic inflaton potential and does not require any par-
ticular fine-tuning or structure such as an inflection point
or a bump on the potential or an ultra slow-roll phase.

The blue-tilted spectrum gives rise to large curvature
perturbations at small scales. These, in turn, source a
stochastic gravitational wave background (SGWB) when
the perturbations re-enter the horizon. Focusing on some
benchmark choices for the number of e-foldings and spec-
tator field potential, we have shown that this scenario
predicts observable gravitational waves at future detec-
tors operating in 10�5 Hz to 10 Hz range, with strengths
⌦GWh

2 ' 10�20 � 10�15.
There are various interesting future directions. In par-

ticular, we have worked in a regime where � does not
dominate the energy density during the cosmological his-
tory. It would be interesting to explore the consequences
of an early matter-dominated era caused by the � field.
We have also seen that the low-frequency scaling of the
SGWB spectrum depends on the mass and coupling of
� and is generally di↵erent from the f

3-scaling expected
in the context of cosmological PT, or f

2/3-scaling ex-
pected in the context of binary mergers. This di↵erent
frequency dependence can be used to identify the origin
of an SGWB, and distinguish between various cosmolog-
ical or astrophysical contributions. Along these lines, it
would be interesting to carry out a quantitative anal-
ysis to understand how well we can separate any two
frequency dependencies, for example, by doing a Fisher
analysis.

NOTE ADDED

While we were finishing this work, the NANOGrav re-
sult combining 15-year data appeared [63]. Secondary
gravitational waves from the scalar perturbation can in
principle give rise to the signal [64]. Such scalar per-
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The first term (→ C1) is then constant in this limit, while
the second term (→ C2) decays as 1/y

3 ↑ 1/a
3. We can

therefore assume the initial conditions,

C1(k) = 2ω(k), C2(k) = 0 , (A7)

which gives a particular solution,

!(ε,k) =
2

3
ω(k)

3

y2

(
sin y

y
↓ cos y

)
, (A8)

resulting in the transfer function, via (64),

T!(kε) =
3

(kε/
↔

3)3

(
sin

kε↔
3

↓ kε↔
3

cos
kε↔

3

)
. (A9)

We can now see the distinct behavior of super-horizon
(kε ↗ 1) and sub-horizon (kε ↘ 1) modes in the ra-
diation dominated era. While the super-horizon modes
freeze via our analysis above, the sub-horizon modes os-
cillate and damp as ↑ cos kε/(kε)2.

In the matter dominated era, w = 0 and the equation
of motion for ! becomes,

!→→(ε,k) + 3H!→(ε,k) = 0 , (A10)

leading to a constant transfer function.

2. Green’s function and GW solution

In this subsection, we discuss in detail the solutions
to eq. (60), which is derived using the second-order Ein-

stein equation, G
(2)

ij
= 8ϑGT

(2)

ij
, for second-order tensor

and first-order scalar contributions. We neglect scalar
anisotropic stress, and second-order vector and scalar
perturbations. In other words, we use the following per-
turbed FLRW metric in the Newtonian gauge,

ds
2 = ↓ (1 + 2!) dt

2 + a
2

(
(1 ↓ 2!) ϖij +

1

2
hij

)
dx

idx
j
,

(A11)
assuming a perfect fluid energy-momentum tensor with
equation of state w. Using lower order solutions and
projecting out spatial indices using polarization tensors,
i.e. ϱ

ij

ω
Tij = Tω for any tensor T , we recover (60). For

simplicity, we define a new variable v(ε,k) = ahω(ε,k),
which gives the equation of motion for v(ε,k),

v
→→(ε,k) +

[
k
2 ↓ a

→→(ε)

a(ε)

]
v(ε,k) = 4a(ε)Sω(ε,k) . (A12)

We need the two homogeneous solutions of this equation
v1(ε) and v2(ε) to construct the Green’s function,

Gk(ε, ε̄) =
v1(ε)v2(ε̄) ↓ v1(ε̄)v2(ε)

v
→
1
(ε̄)v2(ε̄) ↓ v1(ε̄)v→

2
(ε̄)

. (A13)

For each k we have

v
→→
1,2

(ε) +

[
k
2 ↓ a

→→(ε)

a(ε)

]
v1,2(ε) = 0 (A14)

which, using a → ε
ε and x = kε , leads to

d2
v1,2(x)

dx2
+

[
1 ↓ ς(ς ↓ 1)

x2

]
v1,2(x) = 0 , (A15)

where ς = 2/(1 + 3w). The solutions are

v1(x) =
↔

xJε↑1/2(x) (A16)

v2(x) =
↔

xYε↑1/2(x) (A17)

where Jε↑1/2 and Yε↑1/2 are again spherical Bessel func-
tions of first and second kind, respectively. We note that

dv1

dx
=

ς↔
x

Jε↑1/2(x) ↓
↔

xJε+1/2 (A18)

dv2

dx
=

ς↔
x

Yε↑1/2(x) ↓
↔

xYε+1/2 . (A19)

Now, we can calculate the expression in the denominator
of the Green’s function,

v
→
1
(x)v2(x) ↓ v1(x)v→

2
(x) = kx

[
Jε↑1/2(x)Yε+1/2(x)↓

Jε+1/2(x)Yε↑1/2(x)

]

= ↓ 2

ϑ
. (A20)

The second equality can be checked explicitly via
Mathematica. Thus, (A13) simplifies to

Gk(ε, ε̄) =
ϑ

2

↔
ε ε̄

[
Jε↑1/2(kε̄)Yε↑1/2(kε)↓

Jε↑1/2(kε)Yε↑1/2(kε̄)

]
. (A21)

In the radiation dominated era, ς = 1, and so,

Gk(ε, ε̄) =
sin k(ε ↓ ε̄)

k
, (A22)

where we have used (A54) to replace Bessel functions of
order 1/2. In the matter dominated era we have ς = 2,
and so,

Gk(ε, ε̄) =
1

k

[(
ε̄ ↓ ε

ε ε̄

)
cos k(ε ↓ ε̄)+

(
1/k

2 ↓ ε ε̄

ε ε̄

)
sin k(ε ↓ ε̄)

]
. (A23)

where we have again used (A54) to replace Bessel func-
tions of order 3/2.

Having calculated the Green’s functions, we can now
write the solution for hω(ε,k) in the form of (65).

Curvature perturbation Φ
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The first term (→ C1) is then constant in this limit, while
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of motion for ! becomes,
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→
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For each k we have

v
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(ε) +

[
k
2 ↓ a

→→(ε)

a(ε)

]
v1,2(ε) = 0 (A14)

which, using a → ε
ε and x = kε , leads to

d2
v1,2(x)

dx2
+

[
1 ↓ ς(ς ↓ 1)

x2

]
v1,2(x) = 0 , (A15)

where ς = 2/(1 + 3w). The solutions are

v1(x) =
↔

xJε↑1/2(x) (A16)
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tions of first and second kind, respectively. We note that

dv1

dx
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x

Jε↑1/2(x) ↓
↔

xJε+1/2 (A18)

dv2

dx
=

ς↔
x

Yε↑1/2(x) ↓
↔

xYε+1/2 . (A19)

Now, we can calculate the expression in the denominator
of the Green’s function,

v
→
1
(x)v2(x) ↓ v1(x)v→

2
(x) = kx

[
Jε↑1/2(x)Yε+1/2(x)↓

Jε+1/2(x)Yε↑1/2(x)

]

= ↓ 2

ϑ
. (A20)

The second equality can be checked explicitly via
Mathematica. Thus, (A13) simplifies to

Gk(ε, ε̄) =
ϑ

2

↔
ε ε̄

[
Jε↑1/2(kε̄)Yε↑1/2(kε)↓

Jε↑1/2(kε)Yε↑1/2(kε̄)

]
. (A21)

In the radiation dominated era, ς = 1, and so,

Gk(ε, ε̄) =
sin k(ε ↓ ε̄)

k
, (A22)

where we have used (A54) to replace Bessel functions of
order 1/2. In the matter dominated era we have ς = 2,
and so,

Gk(ε, ε̄) =
1

k

[(
ε̄ ↓ ε

ε ε̄

)
cos k(ε ↓ ε̄)+

(
1/k

2 ↓ ε ε̄

ε ε̄

)
sin k(ε ↓ ε̄)

]
. (A23)

where we have again used (A54) to replace Bessel func-
tions of order 3/2.

Having calculated the Green’s functions, we can now
write the solution for hω(ε,k) in the form of (65).

Curvature perturbation Φ

Einstein equation:

h′￼′￼+ 2Hh′￼+ k2h = Φ∂2Φ + . . . Curvature source GW
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tions of order 3/2.

Having calculated the Green’s functions, we can now
write the solution for hω(ε,k) in the form of (65).

Curvature perturbation Φ

Gravitational wave abundance:

Ωgw ∝ ( ·h)2 ∝ Φ4 ∼ ΩradP2
ζ

On large (CMB, LSS) scales: Ωrad ∼ 10−5, Pζ ∼ 10−9

Einstein equation:

h′￼′￼+ 2Hh′￼+ k2h = Φ∂2Φ + . . . Curvature source GW
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turbed FLRW metric in the Newtonian gauge,

ds
2 = ↓ (1 + 2!) dt

2 + a
2

(
(1 ↓ 2!) ϖij +

1

2
hij

)
dx

idx
j
,

(A11)
assuming a perfect fluid energy-momentum tensor with
equation of state w. Using lower order solutions and
projecting out spatial indices using polarization tensors,
i.e. ϱ

ij

ω
Tij = Tω for any tensor T , we recover (60). For

simplicity, we define a new variable v(ε,k) = ahω(ε,k),
which gives the equation of motion for v(ε,k),

v
→→(ε,k) +

[
k
2 ↓ a

→→(ε)

a(ε)

]
v(ε,k) = 4a(ε)Sω(ε,k) . (A12)

We need the two homogeneous solutions of this equation
v1(ε) and v2(ε) to construct the Green’s function,

Gk(ε, ε̄) =
v1(ε)v2(ε̄) ↓ v1(ε̄)v2(ε)

v
→
1
(ε̄)v2(ε̄) ↓ v1(ε̄)v→

2
(ε̄)

. (A13)

For each k we have

v
→→
1,2

(ε) +

[
k
2 ↓ a

→→(ε)

a(ε)

]
v1,2(ε) = 0 (A14)

which, using a → ε
ε and x = kε , leads to

d2
v1,2(x)

dx2
+

[
1 ↓ ς(ς ↓ 1)

x2

]
v1,2(x) = 0 , (A15)

where ς = 2/(1 + 3w). The solutions are

v1(x) =
↔

xJε↑1/2(x) (A16)

v2(x) =
↔

xYε↑1/2(x) (A17)

where Jε↑1/2 and Yε↑1/2 are again spherical Bessel func-
tions of first and second kind, respectively. We note that

dv1

dx
=

ς↔
x

Jε↑1/2(x) ↓
↔

xJε+1/2 (A18)

dv2

dx
=

ς↔
x

Yε↑1/2(x) ↓
↔

xYε+1/2 . (A19)

Now, we can calculate the expression in the denominator
of the Green’s function,

v
→
1
(x)v2(x) ↓ v1(x)v→

2
(x) = kx

[
Jε↑1/2(x)Yε+1/2(x)↓

Jε+1/2(x)Yε↑1/2(x)

]

= ↓ 2

ϑ
. (A20)

The second equality can be checked explicitly via
Mathematica. Thus, (A13) simplifies to

Gk(ε, ε̄) =
ϑ

2

↔
ε ε̄

[
Jε↑1/2(kε̄)Yε↑1/2(kε)↓

Jε↑1/2(kε)Yε↑1/2(kε̄)

]
. (A21)

In the radiation dominated era, ς = 1, and so,

Gk(ε, ε̄) =
sin k(ε ↓ ε̄)

k
, (A22)

where we have used (A54) to replace Bessel functions of
order 1/2. In the matter dominated era we have ς = 2,
and so,

Gk(ε, ε̄) =
1

k

[(
ε̄ ↓ ε

ε ε̄

)
cos k(ε ↓ ε̄)+

(
1/k

2 ↓ ε ε̄

ε ε̄

)
sin k(ε ↓ ε̄)

]
. (A23)

where we have again used (A54) to replace Bessel func-
tions of order 3/2.

Having calculated the Green’s functions, we can now
write the solution for hω(ε,k) in the form of (65).

Curvature perturbation Φ

Gravitational wave abundance:

Ωgw ∝ ( ·h)2 ∝ Φ4 ∼ ΩradP2
ζ

On large (CMB, LSS) scales: Ωrad ∼ 10−5, Pζ ∼ 10−9

Einstein equation:

h′￼′￼+ 2Hh′￼+ k2h = Φ∂2Φ + . . . Curvature source GW

Clearly, to have observable signal, need much larger 
curvature perturbation on smaller scales (blue tilted).
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Results: eigenvalues and eigenfunctions + power spectrum

2.3 Cosmological History and Curvature Perturbation

In this subsection we discuss a cosmological scenario in which the curvature perturbation
on large scales is controlled by the inflaton field �. This perturbation is slightly red-tilted,
as required by CMB observations. On the other hand, the curvature perturbation on small
scales is controlled by a spectator field � which gives rise to a blue-tilted spectrum. This
blue-tilted spectrum originates from stochastic fluctuations of �, as we discuss now.

A brief history of the early Universe in our scenario is as follows. Background dynamics
is driven by the inflaton field during inflation and � behaves as a spectator field with subdom-
inant energy density. � acquires stochastic fluctuations during inflation and becomes frozen
with some root mean square equilibrium displacement away from the minimum. After the
end of inflation, inflaton reheats into radiation which dominates the energy density while �

keeps diluting as a cosmological constant. As the Hubble scale falls below the effective mass
of �, it starts oscillating around its potential. Eventually � decays into radiation, following
which the evolution of the Universe becomes standard.

As a concrete example let us consider the model considered in (2.23). At the end of
inflation, the spectator field gets localized to the minimum of its potential, h�ei = 0. However,
it has a non-zero field variance h�2

e i 6= 0. The subscript ‘e’ denotes end of inflation. Total
energy density carried by � at the end of inflation is then given by,

⇢�,e =
1

2
m

2h�2
e i+

�

4
h�4

e i '
1

2
m

2h�2
e i+

�

4
h�2

e i2, (2.24)

where we assume negligible non-Gaussianity in the second equality. [SK: I don’t think we
should make this assumption since we can do the full computation anyways.] Depending on
the relative size of the effective mass [SK: probably need an expression] compared to the
Hubble parameter, the energy density in � redshifts in different ways. In its early stages,
it behaves as a cosmological constant. Subsequently it dilutes as radiation, and finally as
pressure-less dust before decaying into SM radiation,

⇢�(t) =

8
><

>:

⇢�,e , me↵ . H

⇢�,e(a/a1)
�4

, me↵ & H and m .
p

�h�2i/2
⇢�,e(a2/a1)

�4
(a/a2)

�3
, me↵ & H and m &

p
�h�2i/2.

(2.25)

[SK: If we do not use the above and the below equations, may be we can remove them.]
The first transition happens when me↵ = H, i.e. m

2
+ 3�h�2

e i = H
2 which in a radiation

dominated universe implies

a1

ae
=

✓
H

2
e

m2 + 3�h�2
e i

◆1/4

'
✓

H
2
e

3�h�2
e i

◆1/4

(2.26)

For the second equality, we use the fact that self-interaction energy is dominant. The second
transition happens when m =

p
�h�2i/2. We have h�2i / a

�2 during the radiation phase to
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with  m < H



Stochastic method
The spectrum of its fluctuation on large scales  
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Evolution of fluctuations: 
small vs large scales

H−1
Fluctuations (stochastic)

Classical, follows E.O.M.



Light field during inflation

1. Massless. “Stuck” at large field value. 


Example: misaligned axion.


2. Massive but light.

m2
σ < H2



Light field during inflation
Massive but light. (Free field for simplicity)

·σ = −
m2

σσ
3H

→ σ = exp (−m2
σ ∫

t dt′￼

3H(t′￼) ) ⋅ σi
Initial field 

value
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Massive but light. (Free field for simplicity)

·σ = −
m2

σσ
3H

→ σ = exp (−m2
σ ∫

t dt′￼

3H(t′￼) ) ⋅ σi
Initial field 

value

Roughly, −∫
t dt′￼

3H(t′￼)
∼

1
·H

If  


Initial value of field does not matter. Amplitude of field 
dominated by stochastic fluctuation around origin

m2
σ > ϵH2 (ϵ = ·H/H2),
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Results: eigenvalues and eigenfunctions + power spectrum

2.3 Cosmological History and Curvature Perturbation

In this subsection we discuss a cosmological scenario in which the curvature perturbation
on large scales is controlled by the inflaton field �. This perturbation is slightly red-tilted,
as required by CMB observations. On the other hand, the curvature perturbation on small
scales is controlled by a spectator field � which gives rise to a blue-tilted spectrum. This
blue-tilted spectrum originates from stochastic fluctuations of �, as we discuss now.

A brief history of the early Universe in our scenario is as follows. Background dynamics
is driven by the inflaton field during inflation and � behaves as a spectator field with subdom-
inant energy density. � acquires stochastic fluctuations during inflation and becomes frozen
with some root mean square equilibrium displacement away from the minimum. After the
end of inflation, inflaton reheats into radiation which dominates the energy density while �

keeps diluting as a cosmological constant. As the Hubble scale falls below the effective mass
of �, it starts oscillating around its potential. Eventually � decays into radiation, following
which the evolution of the Universe becomes standard.

As a concrete example let us consider the model considered in (2.23). At the end of
inflation, the spectator field gets localized to the minimum of its potential, h�ei = 0. However,
it has a non-zero field variance h�2

e i 6= 0. The subscript ‘e’ denotes end of inflation. Total
energy density carried by � at the end of inflation is then given by,

⇢�,e =
1

2
m

2h�2
e i+
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4
h�4

e i '
1

2
m

2h�2
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�

4
h�2

e i2, (2.24)

where we assume negligible non-Gaussianity in the second equality. [SK: I don’t think we
should make this assumption since we can do the full computation anyways.] Depending on
the relative size of the effective mass [SK: probably need an expression] compared to the
Hubble parameter, the energy density in � redshifts in different ways. In its early stages,
it behaves as a cosmological constant. Subsequently it dilutes as radiation, and finally as
pressure-less dust before decaying into SM radiation,

⇢�(t) =

8
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[SK: If we do not use the above and the below equations, may be we can remove them.]
The first transition happens when me↵ = H, i.e. m
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+ 3�h�2
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2 which in a radiation

dominated universe implies
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For the second equality, we use the fact that self-interaction energy is dominant. The second
transition happens when m =

p
�h�2i/2. We have h�2i / a

�2 during the radiation phase to
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with  m < H

Starobinsky and Yokoyama, 1994; Markkanen, Rajantie, Stopyra, Tenkanen, 1904.11917
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Substituting eq. (2.39) gives

Pf (k) =
X

n

2

⇡
f2

n�

✓
2 � 2

⇤n

H

◆
sin

✓
⇤n⇡

H

◆✓
k

H

◆2⇤n/H

. (2.43)

At long distances, k ⌧ H, the power spectrum (2.43) is also dominated by the leading
term and has the power-law form,

Pf (k) ⇠
2

⇡
Af� [2 � (nf � 1)] sin

✓
⇡(nf � 1)

2

◆✓
k

H

◆
nf�1

⇡ Af (nf � 1)

✓
k

H

◆
nf�1

, (2.44)

where the constants Af and nf are the same as in eq. (2.40), and the last form is valid when
|nf � 1| ⌧ 1. In particular, this shows that nf is the spectral index, commonly defined as

ln Pf (k)

ln k
= nf � 1. (2.45)

3 Example: a massive self-interacting field

3.1 Eigenvalue equation

As an example of the formalism presented in the previous section we will discuss a potential
with quadratic and quartic contributions

V (�) =
1

2
m2�2 +

�

4
�4 , (3.1)

with the assumption m2 > 0. The analysis required for the double well potential, m2 < 0, is
significantly more complicated, which we will investigate in a separate publication [64].

For the potential in eq. (3.1) the eigenvalue equation (2.17) becomes

1

2

⇢
@2

@�2
�

✓
4⇡2

3H4

◆2�
m4�2+2�m2�4+�2�6

�
+

4⇡2

3H4

�
m2+3��2

��
 n(�) = �

4⇡2

H3
⇤n n(�) . (3.2)

It is convenient to introduce a scaled version of the above equation expressed with only
dimensionless parameters

⇢
@2

@x2
� U(↵; x)

�
 n(↵; x) = �8⇡2

⇤n(↵)

�1/2H
 n(↵; x), (3.3)

where

x ⌘
�1/4

H
�, ↵ ⌘

m2

p
�H2

, (3.4)

and

U(↵; x) =

✓
4⇡2

3

◆2

x2
�
↵+ x2

�2
�

4⇡2

3

�
↵+ 3x2

�
. (3.5)

In this form it is apparent that up to an overall scale, the eigenvalues ⇤n and the eigen-
functions  n depend only on one dimensionless parameter ↵. In the next subsection, we will
consider the limits of small and large ↵ using perturbation theory, and the case of an arbitary
↵ numerically. From now on throughout this section we will drop the explicit x dependence
from the eigenfunctions.
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Blue tilt
3

Figure 1. Schematic of the mechanism. The comoving horizon
1/(aH) decreases during inflation and increases after that.
Any k-mode carries a fluctuation of order H/(2⇡) at the time
of mode exit. However, modes with larger k (red) exit the
horizon later and encounters less dilution compared to modes
with smaller k (blue), since t⇤ > t̃⇤. Consequently, modes
with larger k source stronger gravitational waves upon horizon
re-entry (shown via square box). We also depict the fact that
� carries an energy density / H

4 during inflation, and dilutes
as matter (for our benchmark choices) after inflation ends.

tually, � decays into Standard Model radiation, and its
isocurvature perturbations get imprinted onto the curva-
ture perturbation. Di↵erent from the curvaton paradigm,
in our scenario, � does not dominate the energy density of
the Universe, and also the fluctuations of the inflaton are
not negligible. In particular, on large scales, observed via
CMB and LSS, the fluctuations are red-tilted and sourced
by the inflaton, as in ⇤CDM cosmology. On the other
hand, the blue-tilted � fluctuations are subdominant on
those scales, while dominant at smaller scales . Mpc.
These enhanced perturbations can source an SGWB, ob-
servable in future gravitational wave detectors, as we de-
scribe below.

The rest of the work is organized as follows. In sec-
tion II, we describe the evolution of the inflaton field and
� along with some general properties of curvature per-
turbation in our framework. In section III, we compute
the stochastic contributions to � fluctuations to obtain
its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton field
� drives the expansion of the Universe during inflation
and the quantum fluctuations of � generate the density
fluctuations that we observe in the CMB and LSS, as
in standard cosmology. We also assume that there is a
second real scalar field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1

2
m

2
�
2 +

1

4
��

4
. (1)

The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quartic
interactions dominate, with ��

2 � m
2, ⇢� dilutes like

radiation [29]. Eventually, the amplitude of � decreases
su�ciently, so that ��2 . m

2, following which ⇢� starts
redshifting like matter. We illustrate these behaviors in
Fig. 2.

Similar to the curvaton paradigm [25–28], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [30],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a

2
 �ij (ignoring vector and tensor

perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Since there is no energy transfer

After exit, damping 
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fluctuations
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Consider the mode with physical momentum k(t). The mode exits the horizon when k(t⇤) = H.

At later time t, the physical momentum becomes

k(t)

k(t⇤)
=

k(t)

H
= exp(�H(t� t⇤)). (1)

For the fluctuation of a light (but massive) field �. When a certain mode with physical

momentum k(t) is exiting the horizon, its amplitude is �(t⇤). At the same time, the amplitude

will decrease (albeit slowly since m� < H) since the field is massive. We take the evolution of the

amplitude obeys the classical equation of motion (assuming free field without self-interaction for

simplicity)

�̇ = �m
2
��

3H
. (2)

Then, the amplitude is

�k(t) = �(t⇤) exp

✓
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2
�
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m
2
�
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
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� m
2
�

3H2

, (3)

where we used Equation 1 in the last step. From this, we conclude

P� / �k(t)
2 /


k(t)

H

� 2m2
�

3H2

(4)

1

At horizon exit: 
Amplitude ≈ H
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of mode exit. However, modes with larger k (red) exit the
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with smaller k (blue), since t⇤ > t̃⇤. Consequently, modes
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4 during inflation, and dilutes
as matter (for our benchmark choices) after inflation ends.

tually, � decays into Standard Model radiation, and its
isocurvature perturbations get imprinted onto the curva-
ture perturbation. Di↵erent from the curvaton paradigm,
in our scenario, � does not dominate the energy density of
the Universe, and also the fluctuations of the inflaton are
not negligible. In particular, on large scales, observed via
CMB and LSS, the fluctuations are red-tilted and sourced
by the inflaton, as in ⇤CDM cosmology. On the other
hand, the blue-tilted � fluctuations are subdominant on
those scales, while dominant at smaller scales . Mpc.
These enhanced perturbations can source an SGWB, ob-
servable in future gravitational wave detectors, as we de-
scribe below.

The rest of the work is organized as follows. In sec-
tion II, we describe the evolution of the inflaton field and
� along with some general properties of curvature per-
turbation in our framework. In section III, we compute
the stochastic contributions to � fluctuations to obtain
its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.
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We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton field
� drives the expansion of the Universe during inflation
and the quantum fluctuations of � generate the density
fluctuations that we observe in the CMB and LSS, as
in standard cosmology. We also assume that there is a
second real scalar field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,
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The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quartic
interactions dominate, with ��

2 � m
2, ⇢� dilutes like

radiation [29]. Eventually, the amplitude of � decreases
su�ciently, so that ��2 . m

2, following which ⇢� starts
redshifting like matter. We illustrate these behaviors in
Fig. 2.

Similar to the curvaton paradigm [25–28], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [30],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a

2
 �ij (ignoring vector and tensor

perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Since there is no energy transfer
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Figure 1. Schematic of the mechanism. The comoving horizon
1/(aH) decreases during inflation and increases after that.
Any k-mode carries a fluctuation of order H/(2⇡) at the time
of mode exit. However, modes with larger k (red) exit the
horizon later and encounters less dilution compared to modes
with smaller k (blue), since t⇤ > t̃⇤. Consequently, modes
with larger k source stronger gravitational waves upon horizon
re-entry (shown via square box). We also depict the fact that
� carries an energy density / H

4 during inflation, and dilutes
as matter (for our benchmark choices) after inflation ends.

tually, � decays into Standard Model radiation, and its
isocurvature perturbations get imprinted onto the curva-
ture perturbation. Di↵erent from the curvaton paradigm,
in our scenario, � does not dominate the energy density of
the Universe, and also the fluctuations of the inflaton are
not negligible. In particular, on large scales, observed via
CMB and LSS, the fluctuations are red-tilted and sourced
by the inflaton, as in ⇤CDM cosmology. On the other
hand, the blue-tilted � fluctuations are subdominant on
those scales, while dominant at smaller scales . Mpc.
These enhanced perturbations can source an SGWB, ob-
servable in future gravitational wave detectors, as we de-
scribe below.

The rest of the work is organized as follows. In sec-
tion II, we describe the evolution of the inflaton field and
� along with some general properties of curvature per-
turbation in our framework. In section III, we compute
the stochastic contributions to � fluctuations to obtain
its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton field
� drives the expansion of the Universe during inflation
and the quantum fluctuations of � generate the density
fluctuations that we observe in the CMB and LSS, as
in standard cosmology. We also assume that there is a
second real scalar field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,
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The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m
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the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quartic
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2, ⇢� dilutes like

radiation [29]. Eventually, the amplitude of � decreases
su�ciently, so that ��2 . m

2, following which ⇢� starts
redshifting like matter. We illustrate these behaviors in
Fig. 2.

Similar to the curvaton paradigm [25–28], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [30],
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perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Since there is no energy transfer
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Substituting eq. (2.39) gives

Pf (k) =
X

n

2

⇡
f2

n�
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2 � 2

⇤n

H

◆
sin

✓
⇤n⇡

H

◆✓
k
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◆2⇤n/H

. (2.43)

At long distances, k ⌧ H, the power spectrum (2.43) is also dominated by the leading
term and has the power-law form,

Pf (k) ⇠
2
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Af� [2 � (nf � 1)] sin

✓
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2

◆✓
k

H

◆
nf�1
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✓
k

H

◆
nf�1

, (2.44)

where the constants Af and nf are the same as in eq. (2.40), and the last form is valid when
|nf � 1| ⌧ 1. In particular, this shows that nf is the spectral index, commonly defined as

ln Pf (k)

ln k
= nf � 1. (2.45)

3 Example: a massive self-interacting field

3.1 Eigenvalue equation

As an example of the formalism presented in the previous section we will discuss a potential
with quadratic and quartic contributions

V (�) =
1

2
m2�2 +

�

4
�4 , (3.1)

with the assumption m2 > 0. The analysis required for the double well potential, m2 < 0, is
significantly more complicated, which we will investigate in a separate publication [64].

For the potential in eq. (3.1) the eigenvalue equation (2.17) becomes
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H3
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It is convenient to introduce a scaled version of the above equation expressed with only
dimensionless parameters

⇢
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@x2
� U(↵; x)

�
 n(↵; x) = �8⇡2

⇤n(↵)

�1/2H
 n(↵; x), (3.3)

where
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p
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, (3.4)

and

U(↵; x) =
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4⇡2

3

◆2

x2
�
↵+ x2

�2
�

4⇡2

3

�
↵+ 3x2

�
. (3.5)

In this form it is apparent that up to an overall scale, the eigenvalues ⇤n and the eigen-
functions  n depend only on one dimensionless parameter ↵. In the next subsection, we will
consider the limits of small and large ↵ using perturbation theory, and the case of an arbitary
↵ numerically. From now on throughout this section we will drop the explicit x dependence
from the eigenfunctions.
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its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

Clarifications on the notations. (1) Perturbed FRW

metric. Comment on hij vs
1

2
hij . (2) Fourier transform

convention. Comment on (2⇡)3 vs (2⇡)3/2 in the litera-
ture.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton
field � drives the expansion of the Universe during in-
flation and the quantum fluctuations of � generate the
density fluctuations that we observe in the CMB and
LSS, as in standard cosmology. We also assume that
there is a second field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1

2
m

2
�
2 +

1

4
��

4
. (1)

The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quar-
tic interactions dominate, with ��

2 � m
2, ⇢� dilutes

like radiation [15]. Eventually, the amplitude of � de-
creases su�ciently, so that ��2 . m

2, following which
⇢� starts redshifting like matter. We illustrate these be-
haviors in fig. 1.

Similar to the curvaton paradigm [11–14], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.
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Figure 1. Time evolution of scalar field energy density ⇢�(t).
In scenarios where the quartic term dominates the initial evo-
lution (dashed red), the field dilutes as radiation (dot-dashed
olive), ⇢�(t) / 1/a(t)4. Eventually, the mass term becomes
important, and the behavior becomes ⇢�(t) / 1/a(t)3. The
benchmark choices in this work will mimic the blue curve
where the evolution of ⇢�(t) is always dominated by the mass
term with a matter-like dilution.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [16],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a2 �ij (ignoring vector and tensor
perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Then there is no energy transfer
between the two sectors and their energy densities evolve
as,

⇢̇r = �4H⇢r , ⇢̇� = �3H⇢�, (3)

where we have focused on the epoch where � dilutes like
matter. For the benchmark parameter choices discussed
below, the matter-like dilution for � onsets soon after
inflation. Similar to eq. (2), we can parametrize gauge
invariant fluctuations in radiation and � with the vari-
ables,

⇣r = � +
1

4

�⇢r

⇢r
, ⇣� = � +

1

3

�⇢�

⇢�
. (4)

In terms of the above variables, we can express eq. (2)
as,

⇣ =
4

4 + 3f�
⇣r +

3f�
4 + 3f�

⇣� = ⇣r +
f�

4 + 3f�
S�. (5)

Here S� ⌘ 3(⇣� � ⇣r) is the isocurvature perturbation
between radiation and � perturbations. In the absence

Eventually,  
evolve like matter 

Can become important

decay



After inflation
3

its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.
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With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [16],

⇣ = � � H
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⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a2 �ij (ignoring vector and tensor
perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Then there is no energy transfer
between the two sectors and their energy densities evolve
as,

⇢̇r = �4H⇢r , ⇢̇� = �3H⇢�, (3)

where we have focused on the epoch where � dilutes like
matter. For the benchmark parameter choices discussed
below, the matter-like dilution for � onsets soon after
inflation. Similar to eq. (2), we can parametrize gauge
invariant fluctuations in radiation and � with the vari-
ables,

⇣r = � +
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In terms of the above variables, we can express eq. (2)
as,

⇣ =
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4 + 3f�
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Here S� ⌘ 3(⇣� � ⇣r) is the isocurvature perturbation
between radiation and � perturbations. In the absence
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upper bound [1], ⇢end ' Vk/100, motivated by simple
slow-roll inflation models, and w ⇡ 0 [23–25].2 Then
depending on the reheating temperature, we get

N(k) =

(
62, TRH = 6 ⇥ 1015 GeV,

59, TRH = 1011 GeV.
(55)

For the first benchmark, we have assumed an instan-
taneous reheating after inflation, while for the second
benchmark, the reheating process takes place for an
extended period of time. For these two benchmarks,
kend ⇡ 4 ⇥ 1023 Mpc�1 and 1022 Mpc�1, respectively.

To determine �2

⇣
(k), we also need to evaluate f� as a

function of time. We can express the time dependence of
f� in terms of k in the following way. A given k-mode
re-enters the horizon when k = akHk, and assuming ra-
diation domination, we get k/kend = aend/ak. Since f�

increases with the scale factor before � decay, we can ex-
press f�(t) = f�(td)(kd/k), for t < td, where kd and k

are the modes that re-enter the horizon at time td and
t, respectively. Therefore, the final expression for the
curvature power spectrum at the time of mode re-entry
follows from eq. (7),

�2

⇣
(k) =

8
><

>:

�2

⇣r
(k) +

⇣
f�(td)

4+3f�(td)

⌘2

�2

S�
(k), k < kd,

�2

⇣r
(k) +

⇣
f�(td)(kd/k)

4+3f�(td)(kd/k)

⌘2

�2

S�
(k), k > kd.

(56)

To determine the scale kd, we consider the benchmarks
discussed above, along with some additional choices for
other parameters.

a. Benchmark 1. We focus on the first benchmark
in eq. (55). For m

2 = 0.2H2 and � ' 0.05 � 0.1, we get
hV (�)i ⇡ 0.02H4 from eq. (41), implying hV (�)i/Vk ⇡
3⇥10�12 for H = 5⇥1013 GeV. Assuming instantaneous
reheating, and ⇢end ' Vk/100, we see f� ' 1 for a '
(1/3) ⇥ 1010aend. As benchmarks, we assume � decays
when f� = 1 and 1/3. Using kend ⇡ 4 ⇥ 1023 Mpc�1,
we can then evaluate kd ⇡ 1014 Mpc�1 and kd ⇡ 3 ⇥
1014 Mpc�1, respectively. The result for the curvature
power spectrum with these choices is shown in fig. 2.

b. Benchmark 2. We now discuss the second bench-
mark in eq. (55). We again choose m

2 = 0.2H2 and
� ' 0.05 � 0.1, for which we get hV (�)i ⇡ 0.02H4

from eq. (41). This implies hV (�)i/Vk ⇡ 3 ⇥ 10�12 for
H = 5⇥1013 GeV, as before. The rest of the parameters
can be derived in an analogous way, with one di↵erence.
During the reheating epoch, with our assumption w ⇡ 0,
f� does not grow with the scale factor since the dominant
energy density of the Universe is also diluting as mat-
ter. Accounting for this gives kd ⇡ 8 ⇥ 1011 Mpc�1 and
kd ⇡ 3 ⇥ 1012 Mpc�1, for f� = 1 and 1/3, respectively,
with the resulting curvature power spectrum shown in
fig. 3.

2
The precise value of w is model dependent, see, e.g., [26–30]

and [31] for a review.
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Figure 2. The power spectrum of curvature perturbations for
benchmark 1 with various choices for the quartic coupling �

and decay constant f�. We label the momentum kd at which
the spectrum reaches its peak. We can see that the amplitude
of this peak increases with decreasing � and/or increasing f�.
Signals for all choices may be accessible to super-PIXIE, with
maximum signals possibly reaching PTAs.
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Figure 3. The power spectrum of curvature perturbations
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increasing their visibility to near-future detectors. In partic-
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inflationary models. Then setting k = a0H0, and H = 5 ⇥ 1013 GeV, consistent with the current

upper bound, we get N(k) ⇡ 62 and kend ⇡ 1023 Mpc�1.

The energy density in � during inflation is given via eq. (40). For m
2 = 0.2H

2 and � =

0.05, we get hV (�)i ⇡ 0.02H
4, implying hV (�)i/V⇤ ⇡ 3 ⇥ 10�12. Now a given k-mode reenters

the horizon when k = aentHent, assuming radiation domination instantly after inflation, we get

k/kend = aend/aent. Choosing k = 1014 Mpc�1 and ⇢end = V⇤/100, we see

f� =
hV (�)i

⇢end
⇥

aent

aend
⇡

1

3
. (53)

The result is shown in Fig. ??.

V. GRAVITATIONAL WAVE SIGNATURE

A. Secondary Gravitational Waves from Scalar Curvature Perturbation

We now review how large primordial curvature perturbations can source GW at the second

order in cosmological perturbation theory. We then evaluate the GW spectrum sourced by P⇣

computed in section IV. We start our discussion with a brief review of the essential relations and

expand the discussion further in appendix A.

We write the GW fluctuations in Fourier space as,

hij(⌧,x) =
X

�=+,⇥

Z
d3

k

(2⇡)3
e
ik·x

✏
�

ij(k)h�(⌧,k) , (54)

 Reza Ebadi, Soubhik Kumar, Amara McCune, Hanwen Tai, LTW, 2307.12048

Assuming the scalar behave similar to curvaton.  
Becoming important before decay. 
Assumption: scalar field does not dominate (more later)
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The result is shown in Fig. ??.

V. GRAVITATIONAL WAVE SIGNATURE

A. Secondary Gravitational Waves from Scalar Curvature Perturbation

We now review how large primordial curvature perturbations can source GW at the second

order in cosmological perturbation theory. We then evaluate the GW spectrum sourced by P⇣

computed in section IV. We start our discussion with a brief review of the essential relations and

expand the discussion further in appendix A.

We write the GW fluctuations in Fourier space as,

hij(⌧,x) =
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✏
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Assuming the scalar behave similar to curvaton.  
Becoming important before decay.
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Figure 5. Gravitational wave spectrum for the benchmarks discussed in Fig. 3. We notice that the number of e-folds after
CMB-observable modes exited the horizon determines the peak frequency of the spectrum, and correspondingly, di↵erent
detectors can be sensitive to the signal. Although a similarly peaked spectrum would appear in the context of cosmological
phase transitions (PT), the low-frequency tail of this GW spectrum is di↵erent from the usual f

3 tail. While in the context
of PT the f

3 scaling originates due to causality and superhorizon behavior of fluctuations, in our scenario, the f -scaling is
determined by � mass. The di↵ering frequency dependence can then be used to discriminate between the two classes of signals.

turbations could be generated in a model similar to the
one considered in this paper. However, the frequency de-
pendence of ⌦GWh

2 determined by the NANOGrav re-
sult is [63] 1.8 ± 0.6. We note that for a free field with
mass m, the frequency dependence of ⌦GWh

2 is given by,
4m

2
/(3H

2). So for the central value, one would naively
infer m

2
/H

2 = 1.4. Therefore to interpret it in terms
of a free field, we require a mass bigger than the Hub-
ble scale. However, since for larger than Hubble-scale
masses, the stochastic e↵ects are not e�cient, one may
have to go beyond the stochastic scenario to explain the
NANOGrav observations. We could instead consider a
regime in which the misalignment contribution is impor-
tant [13, 14]. We will leave a detailed analysis of this
scenario to future work.
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Appendix A: Scalar-induced gravitational waves:
technical details

1. Transfer functions

The equation of motion for the scalar perturbation �
in the absence of isocurvature perturbations is,

�00(⌧,k) + 3(1 + c
2

s
)H�0(⌧,k) + c

2

s
k
2�(⌧,k) = 0 , (A1)

where c
2

s
' w is the sound speed of the fluid. Defin-

ing dimensionless parameter y =
p

wk⌧ , we rewrite this
equation as

d2�(y,k)

dy2
+

6(1 + w)

1 + 3w

1

y

d�(y,k)

dy
+ �(y,k) = 0 . (A2)

A general solution is given by,

�(y,k) = y
�� [C1(k)J�(y) + C2(k)Y�(y)] , (A3)

where J� and Y� are spherical Bessel functions of the first
and second kind, respectively, of order �

� =
3(1 + w)

1 + 3w
� 1 . (A4)

In the radiation dominated era, in which w = 1/3 !
� = 1, we have

�(y,k) =
1

y2


C1(k)

✓
sin y

y
� cos y

◆
+

C2(k)

✓
cos y

y
+ sin y

◆�
. (A5)

We can deduce the initial conditions of this solution by
considering the early-time limit k⌧ ⌧ 1,

sin y

y
� cos y ' y

2

3
and

cos y

y
+ sin y ' 1

y
. (A6)
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More general scenario
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Figure 2. Evolution of energy density in (decaying) matter and radiation. The conformal times
ωEMD, ω̃d, and ωd denote the onset of EMD, the decay time of ε and the end of EMD, respectively.
The total energy densities (sum of matter and radiation) at these three times are ϑEMD, ϑ̃d, and ϑd,
respectively, and are indicated by the horizontal lines with the corresponding numerical values. While
these absolute values are not relevant, their ratios determine the relevant cosmology, as discussed in
the text.

4.2 Scenario 2

Combining Eqs. (3.9) and (3.12), we determine the isocurvature power spectrum

!2

Sω
(k) =

H
2

ϖ2ε̃
2

0,end

(
k

kend

)
2m

2
/(3H

2
)

, (4.7)

with ε̃0,end is the curvaton field value at the end of inflation. The energy density in the
curvaton field at the end of inflation is given by ϑω,end → (1/2)m2

ε̃
2

0,end
. Since this can be

much larger than H
4, both kEMD (Eq. (4.4)) and kd (Eq. (4.4)) can be much larger than the

previous case.

Benchmark. For this we consider the same values of H, ϑend, TRH, ϑd, and ϑ̃d as the
previous scenario. Then for m

2 = 0.4H2 and ε̃0,end = 3H, we get

N kend [Mpc→1] kEMD [Mpc→1] kd [Mpc→1]
60.6 4.6 ↑ 1022 5.4 ↑ 1014 6.9 ↑ 1013

We show the resulting spectrum in Fig. 4. The shape is the same as Fig. 3, while the location
of the peak changes and the peak magnitude is now given by !2

ε
→ 5 ↑ 10→6.

4.3 Scenario 3

As explained in Sec. 3.3, in this scenario we expect an almost scale-invariant spectrum of
!2

Sω
for k > kc; the benchmark example associated with Fig. 1 implies kc → 3.2↑ 106 Mpc→1

– 12 –
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Figure 8. Shape of SGWB from a scale invariant power spectrum normalized to have !2
ω(k) = 1.

The dot-dashed line shows the result for the pure RD era. For small values of k ↭ Hd that reenter
the horizon after the end of EMD, the result is the same as the pure RD era, as expected. For much
larger k ↫ HEMD, the modes reenter the horizon prior to the onset of the EMD era. Since most of the
contribution to SGWB comes from horizon crossing time, we again expect a flat spectrum, which is
seen for k ↫ HEMD. However, due to entropy injection from particle decay, SGWB gets diluted and
”GW is smaller. For Hd ↭ k ↭ HEMD, the e#ect of EMD is most prominent. This region also shows
that the full contribution (solid yellow), including both the Newtonian potential and relative velocity
perturbation, is larger than the contribution from Newtonian potential alone (dotted blue).

since the onset of the EMD happens earlier. Correspondingly, a di#erent set of GW detectors,
especially focused on the deci-Hz regime, become relevant.

We show the results for scenario 3 for the two benchmarks discussed in Sec. 4: bench-
mark (a) and benchmark (b), in Fig. 11. While the shapes are similar, benchmark (a) gives a
larger SGWB spectrum due to a smaller value of ω0,end which the signal is inversely propor-
tional to. Due to the flat spectrum for low frequencies, we typically expect to see the signal
in multiple detectors, which could aid in discriminating the signal against the astrophysical
foregrounds.

6.2 Application to the Recent PTA Observations

So far our discussion has been general and we have given example benchmarks for the various
scenarios described above. In this subsection, we apply Scenario 3 to the recent PTA ob-
servations, focusing on the NANOGrav data [16, 55]. To obtain a larger strength of SGWB
than considered in Fig. 11, we consider a smaller value of ω0,end = 0.6H. This means ω2

0
and

→(εω)2↑ are comparable and we evaluate !2

Sω
as per Eq. (3.11). We also replace the constant

ω0 by ω0,end+ω0,→(k/k→)ω↑3/2, as in Eq. (4.8), to capture the motion of the radial mode. Here
we follow the same notation as Sec. 4.3. Namely, ω0,end and ω0,→ denote the field value of the
normalized Goldstone field after the radial mode has settled into its minimum and the time
when the mode k→ exits the horizon, respectively. In particular, we assume the misalignment
angle ϑi = 1, implying ω0,end = fa = 0.6H. We choose H = 1.9 ↓ 1012 GeV during inflation,
indicating TRH ↔ 3.6 ↓ 1014 GeV, along with m = 0.05H, ω0,→ = 3.6 ↓ 104

H, ϖ! = 0.75, and
k→ = 50 Mpc↑1. This implies

– 19 –

More generally, can consider the case scalar perturbation 
dominates (curvaton-like). 
Larger signal, interesting spectral shape. 
To treat this properly, much care is needed, numerically 
challenging.

 Soubhik Kumar, Hanwen Tai, LTW, 2410.17291



2. Complex scalar

Complex scalar

s
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but rather can roll towards it, given appropriate initial conditions.3 For example, if s rolls
from large field values towards small field values during inflation, modes exiting later during
inflation have more power. That is, the spectrum is blue-tilted. However, once the field
reaches the minimum, →s↑ remains constant with time, implying an almost flat spectrum of
!2

Sω
.
We can illustrate this behavior by considering a ‘Mexican hat’ potential for a complex

scalar field ”,

V (”) = ω!(|”|
2
↓ f

2

a/2)2 ↓

(
1

4
m

2”2 + h.c.

)
, (3.14)

with ” = (s/
↔

2) exp(iε) and m parametrizing a soft-breaking of the U(1) symmetry. In-
cluding the kinetic terms we can write,4

L ↗
1

2
(ϑµs)

2 +
1

2
s
2(ϑµε)

2
↓ ω!(s2

↓ f
2

a )2/4 +
1

2
m

2
s
2
ε
2
. (3.15)

The Goldstone mode ε is a light field during inflation and since it has a subdominant energy
density during inflation, its fluctuation corresponds to isocurvature modes. We denote an
initial misalignment angle as εi = →ε↑ and the fluctuations as ϖε = ε ↓ εi. The canonically
normalized Goldstone mode is given by ϱ ↘ →s↑ε, assuming the homogeneous VEV →s↑ is
slowly varying with respect to the Hubble rate. The power spectrum of fluctuations is then
given by →(ϖε)2↑ = H

2
/(2ς→s↑)2. Following the same steps as in the previous subsection, we

can derive

!2

Sω
≃

4

ε
2

i

→(ϖε)2↑ =

(
H

ςεi→s↑

)
2

. (3.16)

To understand the behavior of !2

Sω
as a function of scale, we can solve for the homo-

geneous dynamics of s using Eq. (3.15). For this purpose, we can neglect the angular mode
ε. We show the numerical result in Fig. 1 which shows that s rolls from its initial location,
oscillates around the minimum and eventually settles at fa. To explicitly show the scales
involved, we replace the time coordinate t in terms of the k-mode that exits the horizon
at that time: ln(k/k→) = H(t ↓ t→). Here t→, or equivalently k→, is a fiducial time and in
particular, we fix k→ = 20 Mpc↑1. Physically, the scale k→ exits the horizon when s starts to
move on its potential. Its time evolution can approximated by s ⇐ exp(↓(3/2↓φ)Ht) where
φ =

√
9/4 ↓ m2

s/H
2 and ms is chosen to fit the envelope of the oscillations in Fig. 1.

At the scale k→, the correction to !2

ω
is small enough compared to the current precision

and the energy density in the radial mode is also subdominant compared to the inflationary
energy density. The behavior of !2

ω
for k < k→ depends on the dynamics of the radial mode

prior to the time t→ and is model dependent. However, for k ⇒ k→, !2

Sω
⇐ 10↑2

↓ 10↑3

without violating the current bounds. For the examples shown in Fig. 1, s settles down to
the minimum approximately for ln(k/k→) > 12 implying !2

Sω
(k) is approximately flat for

ln(k/k→) > ln(kc/k→) = 12. Choosing k→ = 20 Mpc↑1, this implies a flattening for k > kc

with kc ≃ 3.2 ⇑ 106 Mpc↑1. This will serve as our benchmark example of an almost flat
but relatively large !2

Sω
(k). In Sec. 4 we will use the notation ϱ0,end ↘ faεi to denote the

normalized field value of the Goldstone mode after s has settled to its minimum.
3A dynamical ‘decay constant’ can also play a role in determining the dark matter abundance, see e.g., [75].
4The soft breaking also contributes to a mass term for s which is however subdominant for the our parameter

choice described later and is not included here.
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To understand the behavior of !2
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as a function of scale, we can solve for the homo-

geneous dynamics of s using Eq. (3.15). For this purpose, we can neglect the angular mode
ε. We show the numerical result in Fig. 1 which shows that s rolls from its initial location,
oscillates around the minimum and eventually settles at fa. To explicitly show the scales
involved, we replace the time coordinate t in terms of the k-mode that exits the horizon
at that time: ln(k/k→) = H(t ↓ t→). Here t→, or equivalently k→, is a fiducial time and in
particular, we fix k→ = 20 Mpc↑1. Physically, the scale k→ exits the horizon when s starts to
move on its potential. Its time evolution can approximated by s ⇐ exp(↓(3/2↓φ)Ht) where
φ =
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2 and ms is chosen to fit the envelope of the oscillations in Fig. 1.

At the scale k→, the correction to !2
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and the energy density in the radial mode is also subdominant compared to the inflationary
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for k < k→ depends on the dynamics of the radial mode

prior to the time t→ and is model dependent. However, for k ⇒ k→, !2
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without violating the current bounds. For the examples shown in Fig. 1, s settles down to
the minimum approximately for ln(k/k→) > 12 implying !2
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(k) is approximately flat for

ln(k/k→) > ln(kc/k→) = 12. Choosing k→ = 20 Mpc↑1, this implies a flattening for k > kc

with kc ≃ 3.2 ⇑ 106 Mpc↑1. This will serve as our benchmark example of an almost flat
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(k). In Sec. 4 we will use the notation ϱ0,end ↘ faεi to denote the
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density during inflation, its fluctuation corresponds to isocurvature modes. We denote an
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To understand the behavior of !2
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geneous dynamics of s using Eq. (3.15). For this purpose, we can neglect the angular mode
ε. We show the numerical result in Fig. 1 which shows that s rolls from its initial location,
oscillates around the minimum and eventually settles at fa. To explicitly show the scales
involved, we replace the time coordinate t in terms of the k-mode that exits the horizon
at that time: ln(k/k→) = H(t ↓ t→). Here t→, or equivalently k→, is a fiducial time and in
particular, we fix k→ = 20 Mpc↑1. Physically, the scale k→ exits the horizon when s starts to
move on its potential. Its time evolution can approximated by s ⇐ exp(↓(3/2↓φ)Ht) where
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(k). In Sec. 4 we will use the notation ϱ0,end ↘ faεi to denote the

normalized field value of the Goldstone mode after s has settled to its minimum.
3A dynamical ‘decay constant’ can also play a role in determining the dark matter abundance, see e.g., [75].
4The soft breaking also contributes to a mass term for s which is however subdominant for the our parameter

choice described later and is not included here.
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normalized Goldstone mode is given by ϱ ↘ →s↑ε, assuming the homogeneous VEV →s↑ is
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Fluctuation becomes larger as radial mode rolling down



Perturbation spectrum
Complex scalar
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Figure 5. Curvature perturbation for Scenario 3, shown in blue, for the left panel of Fig. 1. The
dot-dashed portion of the curve shows an approximate modeling of the power spectrum based on
Eq. (4.8) and is model dependent. On the other hand, for k > kc → 3.2 ↑ 106 Mpc→1, the spectrum
can be robustly determined since the radial mode has settled to its minimum, and therefore, we show
it via the solid line. See the text for the values of various parameters. The constraints and projections
are the same as Fig. 3.
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Figure 6. Curvature perturbation for Scenario 3, shown in blue, for the right panel of Fig. 1. The
rest of the figure follows the same convention as Fig. 5.

These perturbations can then be used to determine the source term for the equation of motion

– 15 –

Steeper blue tilt than the previous case



GW prediction
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Figure 11. SGWB spectrum for the Rolling Radial Mode Scenario (scenario 3). We show the results
for Scenario 3a and Scenario 3b, corresponding to Figs. 5 and 6, respectively. The flat low-frequency
tail in this scenario could make the signal visible in multiple detectors. The associated results for
pure RD are shown via dot-dashed lines. We also show the sensitivity that could be obtained using
fast radio bursts (FRB) [93]. The rest of the projected sensitivity curves are the same as in Fig. 9.
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Figure 12. The time evolution of the radial mode for the NANOGrav benchmark, following the same
convention as Fig. 1. The initial time evolution, left edge of the plot, is dominated by the quartic
coupling ω!, and hence is not well approximated by the approximate envelope. However, for k ↭ e

2
k→,

the evolution can be approximated by an e!ective mass ms for the radial mode.

tion in Fig. 13. The final spectrum of SGWB based on this benchmark is shown in Fig. 14.6

6For this illustrative benchmark incorporating an EMD era, we do not include the e!ect of primordial
non-Gaussianity. We leave a detailed study, which requires a dedicated numerical computation, for future
work.
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Another benchmark
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Figure 13. The primordial curvature perturbation for the NANOGrav benchmark. The initial
isocurvature perturbation can be obtained based on Eqs. (3.11) and (4.8). See text for more details.
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Figure 14. SGWB spectrum for the NANOGrav benchmark in solid blue. The spectrum in the
absence of EMD, but with the same primordial curvature perturbation, is shown in dot-dashed blue.
The NANOGrav data is taken from [55].

7 Conclusion and Future Directions

Large curvature perturbation at small length scales can source an observable stochastic grav-
itational wave background (SGWB), so-called ‘scalar-induced gravitational waves’. In this
work, we have explored several mechanisms that give rise to a curvature perturbation much
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Figure 9. SGWB spectrum for the Stochastic Curvaton Scenario (Scenario 1) with the curvature
perturbation given in Fig. 3. We choose ω = 0.1, consistent with the CMB and Lyε constraints. In
dot-dashed (‘pure RD ker.’), we show the result for a pure RD era using the standard RD kernel to
compute !GW, keeping ”2

ω(k) the same. As expected based on Fig. 8, the EMD enhances the peak
while suppressing the tail, due to entropy dilution from particle decay. We show the sensitivity curves
for SKA, µARES, LISA, BBO, DECIGO, DO Optimal (DO-opt), AEDGE, ET [90], Asteroid [91],
Ultimate DECIGO (ulti-DECIGO) [92].
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Figure 10. Same as Fig. 9 but for the Misaligned Curvaton Scenario (Scenario 2) with the curvature
perturbation given in Fig. 4.

N kend [Mpc→1] kEMD [Mpc→1] kd [Mpc→1]
59.2 1.18 → 1022 3.14 → 108 4.0 → 107

The dynamics of the radial mode is shown in Fig. 12 and the primordial curvature perturba-
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3. GW from Rotating axion
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Figure 1: (a) A schematic showing the initiation of axion rotations and the subsequent
thermalization that makes the rotation circular. (b) Possible post-inflationary cosmologies
with rotation dynamics. The rotating field may either dominate briefly (solid blue) or remain
subdominant (dashed blue line).

ω̇ → a→3. The kinetic energy of rotation, now dominant, dilutes as εS → ω̇2f2
a → a→6, and

the field transitions into a kination phase. We refer to this matter-to-kination transition
point as MK. In summary,

εS →
{
a→3 (matter-like), r > fa

a→6 (kination-like), r ↑ fa.
(2.4)

A supersymmetric (SUSY) model realizing this dynamics is presented in appendix C.3

During inflation, S is taken to be a subdominant spectator field. The inflaton ϑ reheats
the Standard-Model (SM) plasma, initiating radiation dominance with εrad → a→4. As the
S-field evolves, its fractional energy density !S = εS/εtot evolves di!erently from that of
radiation. During the matter-like phase, !S grows and may even dominate, leading to an
early matter-dominated (eMD) epoch. The transition from radiation dominance to eMD is
denoted by RM. After MK, the universe enters a kination-dominated phase, during which
!S reduces rapidly, eventually restoring radiation domination. We denote this transition by
KR. The possible scenarios are illustrated in figure 1(b).

When S temporarily dominates the energy budget, the duration of eMD and kination

3Before the completion of the thermalization when the rotation is elliptic, fluctuations around the rotating
background can grow by parametric resonance [14, 16, 51–54]. For nearly quadratic potentials, the resonance
is ine!ective at large r [14], and as we discuss in Appendix B, thermalization should occur at large r to
avoid non-Gaussianity constraints. Therefore, it is expected that the rotation remains nearly homogeneous.
Even if fluctuations grow, subsequent thermalization will remove fluctuations except for long cosmic strings
(if produced by non-thermal symmetry restoration [16, 55–60]) that are protected by topology and phonon
modes whose thermalization rate is suppressed by the smallness of the momentum of the fluctuations. The
energy density of long cosmic strings is negligible unless the decay constant is near the Planck scale. That
of phonon modes scales as radiation and is negligible. Note that U(1) symmetry is preserved and the U(1)

charge is not dissipated by parametric resonance.
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During inflation, S is taken to be a subdominant spectator field. The inflaton ϑ reheats
the Standard-Model (SM) plasma, initiating radiation dominance with εrad → a→4. As the
S-field evolves, its fractional energy density !S = εS/εtot evolves di!erently from that of
radiation. During the matter-like phase, !S grows and may even dominate, leading to an
early matter-dominated (eMD) epoch. The transition from radiation dominance to eMD is
denoted by RM. After MK, the universe enters a kination-dominated phase, during which
!S reduces rapidly, eventually restoring radiation domination. We denote this transition by
KR. The possible scenarios are illustrated in figure 1(b).

When S temporarily dominates the energy budget, the duration of eMD and kination

3Before the completion of the thermalization when the rotation is elliptic, fluctuations around the rotating
background can grow by parametric resonance [14, 16, 51–54]. For nearly quadratic potentials, the resonance
is ine!ective at large r [14], and as we discuss in Appendix B, thermalization should occur at large r to
avoid non-Gaussianity constraints. Therefore, it is expected that the rotation remains nearly homogeneous.
Even if fluctuations grow, subsequent thermalization will remove fluctuations except for long cosmic strings
(if produced by non-thermal symmetry restoration [16, 55–60]) that are protected by topology and phonon
modes whose thermalization rate is suppressed by the smallness of the momentum of the fluctuations. The
energy density of long cosmic strings is negligible unless the decay constant is near the Planck scale. That
of phonon modes scales as radiation and is negligible. Note that U(1) symmetry is preserved and the U(1)

charge is not dissipated by parametric resonance.

– 5 –

A. Bodas, K. Harigaya, K. Inomata, T. Terada, LTW 2508.08249

Fluctuation in axion field leads to secondary GW. 
GW produced during eMD and MK transition (short wavelength)
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Figure 6: Plots showing benchmarks for the cases of (a) rotation dominance with solid lines
representing short eMD of aMK

aRM
= 3 or !S,MK = 0.75, while dashed lines representing longer

eMD with aMK
aRM

= 100 or !S,MK = 0.99, and (b) rotation non-dominance with short dashed
lines corresponding to !S,MK = 0.1, while dotted lines representing !S,MK = 0.01. TMK for
yellow, orange, and brown curves are 100 MeV, 103 TeV, and 106 TeV, respectively. The
long-wavelength fluctuations ωS(kl) are chosen to saturate the constraints in sections 5.3 -
5.5 with exact values given in the text. The amplitude of the short-wavelength fluctuation
ωS(ks), which is more relevant for the GWB production, is shown alongside each curve.
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Conclusions
We are at the beginning of a new era, gravitational wave as a new 
window to early universe.


More observations of stochastic gravitational wave in the coming 
decades. 


Can reveal important dynamics in the early universe


I focused on the question of new dynamics during inflation:


Blue spectrum of fluctuations  secondary GW


A fast advancing field with many opportunities.

→



Beginnings of exciting times
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