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e Previous work with A. Azatov and M. M. Khalil "Q-ball perturbations
with more details: linear analysis vs lattice” has been published on PRD.

e E-print also available at 2412.13885

300
200 -

)
100 =

80 100 120 140
r

Quoc-Trung Ho /23



Table of Contents

© Introduction

® The Envelope and Bulk-flow approximations

® Two bubbles system

Quoc-Trung Ho



Why study about Gravitational Wave Background (GWB)?

Probes the earlier history of the Universe compared to e.g CMB.

Uncovers exotic Astrophysical/Cosmological sources (phase
transitions, cosmic strings, domain walls, ...)

Active developments from both theory and experiments (e.g LISA,
Einstein Telescope, NanoGray, ...)
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Figure 1: Overview of potential GWB signals across the frequency spectrum.

Credit: [Renzini et al., 2022]
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Gravitational Waves from First Order Phase Transition
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Figure 2: Credit: [Cutting, Hindmarsh, and Weir, 2018]



Approaches in computing GWs from FOPT

Lattice simulations: [Child and Giblin, 2012], [Cutting, Escartin, et al.,
2021]

4 Capture full effects of bubble dynamics.
X Computationally expensive.
X Simulations cannot capture thin-wall bubbles and high wall velocity.

X Limited number of bubbles in the simulation.

Figure 3: Lattice simulation for time evolution of 5 bubbles
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2. The Envelope and Bulk-flow
approximations



Weinberg’s formula for GW radiation

The amount of GW energy radiated in the direction k

dEcw

1o a0 = 269 Mg im ()T (K, ) Tin (k) 2.1)

Applying this for N nucleated bubbles

) 1 ot ik (bR
Tij(k,w) = o /dt ety /dQ dr ek Gntr) 2 (1), (2.2)
=1

Non-linearity of bubble collisions makes direct computations of T;;; almost
impossible
= Approximations.
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Envelope approximation

First observation traced back to 34 years ago [Kosowsky and Turner, 1993]
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Figure 4: Credit: [Konstandin,
2018)

e Before collision, the surface tension scales as:

0 ~ Breleased/A ~ O(R3)JO(R?) ~ O(R)

o After collision, the surface tension vanishes
= J(t, tn, tc) = Go(t — tn)@H(tC — t).
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Bulk-flow approximation

Next step in improving envelope approximation, first done in [Konstandin,
2018].
e After collision, the released energy and wall

width remains constant, the surface tension
-2
scales as Ocollided ~ Ereleased/A ~ O(R )

o(t,tn,t.) =o0(t —t,)O(t. — t)

t(‘ - tn 2
+ 0Ot 1) (f;t )

e With the existence of long-lasting source, Figure 5: Credit: [Konstandin,
one expects both the IR and UV scaling pow- 2018]
ers are affected.
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Envelope and Bulk-flow approximations:
v Model independent. ¢ Faster than simulation.
4 Capture general features of the 4 Easy to generalize to many bub-

GW spectrum. bles systems.
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Figure 6: Envelope approximation (left) vs Bulk-flow approximation (right) for

~ 300 bubbles. Credit: [Konstandin, 2018].
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Going beyond Envelope/Bulk-flow approximations

(D) What if the energy density of collided parts scale differently?
[Lewicki and Vaskonen, 2020]

e The scaling behaviors of surface tension in Envelope/Bulk-flow
approximations is based on simple phenomenological argument.
How to correctly extract the scaling behaviors of o(t,1,,.)?

= Two bubbles system!
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3. Two bubbles system

Time = 3.00

+  Outside Bubbles
- +  Inside Bubbles




Why study this simple system?

e |t captures general aspects of the full spectrum (e.g peak position,
order of amplitude of the spectrum, ...).

e In lattice simulation, the symmetry of the system reduce the
simulation from (3 + 1)D down to (1 + 1)D.

e In the approximations, it could be solved (semi)analytically, provide a
good test bed for which case the approximations work.

Use f in generalized
bulk-flow for
many bubbles

Extract
scaling
function

Perform
two bubbles
simulation
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Generalized Bulk-flow approximation

o(t, tn,tne) = O(tnec — t)oo(t — tn)

tnc_tn 2 tnc_tn §
+ @(t - tn,c)UO(tn,c - tn) (’—> Z ag <7—> (3'1)
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Field equations in hyperbolic coordinates

Given two patches t? > 22 + 42 and t2 < 22 + 3 labelled as + and
—, the field equations in this coordinates become

0L  200L 0*D. dVv
= 0s? j:; ds 022 | ddy =0 (32

In what follows:
e Eq.(3.2)issolved on a (14 1)D lattice.

e The surface tension o is be extracted = input of the generalized
bulk-flow method to compute approximate GW spectrum.

e The stress-energy tensor is computed exactly = obtain the exact GW

spectrum.
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Lattice simulation results
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Lattice simulation results
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Figure 9: Field evolution (left) and its gradient energy density (right)
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Fitting surface tension o

Figure 10: The surface tension for various bubble separations d, together with the
fitting functions with the chosen powers ¢ € [0, 9, 19].
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Exact vs Generalized Bulk-flow
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Sensitivity of fitting coefficients w.r.t d

Normalized fitting coefficients a¢ vs. d, k=0.2, A=1.0
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Figure 12: The sensitivity of fitting coefficients a¢ for § = 0...19.
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Sensitivity of fitting coefficients w.r.t d

Normalized fitting coefficients a¢ vs. d, k=0.2, A=1.0
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Figure 13: The sensitivity of fitting coefficients a¢ with the fitting function
corresponds to ¢ = 0,9, 19.
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What we covered:

e Two bubbles system greatly simplifies the study of GW spectrum on
the lattice.

e Generalized bulk-flow approximation is a powerful to quickly and
correctly extract the GW spectrum from FOPTSs.

What we’re still working on:

e Extend the power spectrum computation towards many bubbles
system.

e When does bulk-flow approximation break down? (e.g existing of
long-live trapped vacuum.)

e Is there an even better way to formulate the bulk-flow contribution?
(e.g dependence on angle between colliding walls.)
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