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Outline
Why should nature have conspired to put all information into the (quasi-)linear 
modes we happen to be able to describe with perturbation theory? 

Accessing the information in non-linear regime typically requires simulation-based 
methods.



Outline
Implicit Likelihood Inference: A tool to solve inverse problems which are implicitly 
defined through simulations, typically using deep neural networks 

1.Motivation & Overview of Methods 

2.Example applications 

3.The “elephant in the room”: How to make it reliable and computationally feasible



A word about words

Simulation-based Inference

Field-level forward modeling 
(e.g., galaxy clustering: F.Schmidt, 

weak lensing: N.Porqueres)

Explicit-likelihood inference Implicit-likelihood inference 
(“likelihood-free inference”)

summary statistics

Field-level likelihood 
(e.g., weak lensing: Dai&Seljak)



Cosmology from HSC year-1 higher order statistics

[Shirasaki+2021]

training simulations

with Jessica Cowell, Daniela Grandon, Joaquin Armijo, Camila 
Novaes, Sihao Cheng, Gabriela Marques, Masato Shirasaki, Jia Liu

noiseless simulated map for comparison: 
signal down to very small scales



Cosmology from HSC year-1 higher order statistics

[Marques+2024] [Armijo+2024]

[Cheng+2024]

peaks and minima Minkowski functionals scattering transform

Probability distribution function

[Thiele+2023]



Cosmology from HSC year-1 higher order statistics

[Marques+2024] [Armijo+2024]

[Cheng+2024]

peaks and minima Minkowski functionals scattering transform

Probability distribution function

[Thiele+2023] Can we avoid Gaussian likelihood approximation? 

To get the best constraints from our data! 

Perhaps even neural summary statistics?



Bayesian inference

￼P(𝗉𝖺𝗋𝖺𝗆𝖾𝗍𝖾𝗋𝗌 |𝖽𝖺𝗍𝖺) =
P(𝖽𝖺𝗍𝖺 |𝗉𝖺𝗋𝖺𝗆𝖾𝗍𝖾𝗋𝗌) P(𝗉𝖺𝗋𝖺𝗆𝖾𝗍𝖾𝗋𝗌)

P(𝖽𝖺𝗍𝖺)posterior

likelihood prior

evidence



Bayesian inference

￼P(𝗉𝖺𝗋𝖺𝗆𝖾𝗍𝖾𝗋𝗌 |𝖽𝖺𝗍𝖺) =
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More concretely: 
𝜃=interesting parameters, 𝜂=nuisance parameters, ζ=initial conditions, 

x=data, m=model: 

P(x | 𝜃) = ∫ D𝜂 Dζ 𝛿[ x - m(𝜃, 𝜂, ζ) ]



Bayesian inference
More concretely: 
𝜃=interesting parameters, 𝜂=nuisance parameters, ζ=initial conditions, 

x=data, m=model: 

P(x | 𝜃) = ∫ D𝜂 Dζ 𝛿[ x - m(𝜃, 𝜂, ζ) ]
Traditional case: 

P(x | 𝜃) = ∫ D𝜂 Gaussian[ x - 𝜇(𝜃, 𝜂), Σ ] 
[do remaining low-dimensional 𝜂-integral with Monte Carlo]



Bayesian inference
More concretely: 
𝜃=interesting parameters, 𝜂=nuisance parameters, ζ=initial conditions, 

x=data, m=model: 

P(x | 𝜃) = ∫ D𝜂 Dζ 𝛿[ x - m(𝜃, 𝜂, ζ) ]
Traditional case: 

P(x | 𝜃) = ∫ D𝜂 Gaussian[ x - 𝜇(𝜃, 𝜂), Σ ]
But what do we do if the Gaussian approximation doesn’t hold? 
→ assume we have simulator that evaluates m(𝜃, 𝜂, ζ) accurately



Neural Implicit Likelihood Inference (ILI)

But what do we do if the Gaussian approximation doesn’t hold? 
→ assume we have simulator that evaluates m(𝜃, 𝜂, ζ) accurately

More concretely: 
𝜃=interesting parameters, 𝜂=nuisance parameters, ζ=initial conditions, 

x=data, m=model: 

P(x | 𝜃) = ∫ D𝜂 Dζ 𝛿[ x - m(𝜃, 𝜂, ζ) ]

￼P(𝗉𝖺𝗋𝖺𝗆𝖾𝗍𝖾𝗋𝗌 |𝖽𝖺𝗍𝖺) =
P(𝖽𝖺𝗍𝖺 |𝗉𝖺𝗋𝖺𝗆𝖾𝗍𝖾𝗋𝗌) P(𝗉𝖺𝗋𝖺𝗆𝖾𝗍𝖾𝗋𝗌)

P(𝖽𝖺𝗍𝖺)

neural likelihood estimation (NLE) neural posterior estimation (NPE)

neural ratio estimation (NRE)



Neural Implicit Likelihood Inference (ILI)

￼P(𝗉𝖺𝗋𝖺𝗆𝖾𝗍𝖾𝗋𝗌 |𝖽𝖺𝗍𝖺) =
P(𝖽𝖺𝗍𝖺 |𝗉𝖺𝗋𝖺𝗆𝖾𝗍𝖾𝗋𝗌) P(𝗉𝖺𝗋𝖺𝗆𝖾𝗍𝖾𝗋𝗌)

P(𝖽𝖺𝗍𝖺)

neural likelihood estimation (NLE) neural posterior estimation (NPE)

neural ratio estimation (NRE)

neural likelihood estimation (NLE): 
conditioned flow q(x|𝜃)

neural ratio estimation (NRE): 
classifier between (x, 𝜃) ~p(x, 𝜃) and ~p(x)p(𝜃)

neural posterior estimation (NPE): 
conditioned flow q(𝜃|x)

[Albergo+2023]

?



Practicality: data size & structure
Usually, data vectors too high dimensional or live in awkward spaces 
→ We deal with this by constructing a useful latent representation through embedding networks

[B.Y.Wang & LT 2025]



Neural Implicit Likelihood Inference (ILI)

• in the limit, any likelihood learnable 

• any simulate-able effect can be incorporated 

• no formal difference between nuisance parameters and initial conditions 

• primary choice at the moment: 

• NPE: empirically good performance, need to deal with flow 

• NRE: classification → super flexible, empirically more tuning required



Curse of dimensionality
Let’s say: 200,000 simulations, 10 model parameters, 10 data points 
 → this is optimistic! 

We’re trying to learn a density in this 10+10 dimensional space

(200,000)1 / (10 + 10) = 1.8, let’s say 2 

What is the implicit prior?



ILI applied in weak lensing

[Novaes+2024]

HSC Y1 DES Y3

[Gatti+2024]



ILI applied in galaxy clustering
SDSS CMASS SGC

[Hahn+2023]

SDSS CMASS NGC voids

[Thiele+2023]



A 3-D Map of the Universe

each dot a galaxy with redshift (~distance)

SDSS/BOSS survey



1) pairs of galaxies (power 
spectrum) 

2) triangles of galaxies 
(bispectrum) 

3) … 

4) “empty regions”: 
cosmic voids 

• size distribution 

• void-galaxy pairs 

• ...

How to summarize this map?
[H

am
aus+

2020]



• upweight underdensities → 
complementary to correlation 
functions 

- corrections to general 
relativity 

- dark energy 

- neutrino mass

What can voids do for us?
neutrinos cold dark matter

[FLAMINGO]

effect of neutrino mass

[G
erbino&

Lattanzi2018]

large 
scales

small 
scales



• Want to constrain neutrino mass sum, ∑ mν, with BOSS data: 

- galaxy auto power spectrum 

- void size function (histogram of void sizes) 

- void galaxy cross power spectrum (void profile)

Simulation-based inference



• Want to constrain neutrino mass sum, ∑ mν, with BOSS data: 

- galaxy auto power spectrum 

- void size function (histogram of void sizes) 

- void galaxy cross power spectrum (void profile) 

• Joint modeling of these statistics difficult with analytic methods

Simulation-based inference

💥



• Want to constrain neutrino mass sum, ∑ mν, with BOSS data: 

- galaxy auto power spectrum 

- void size function (histogram of void sizes) 

- void galaxy cross power spectrum (void profile) 

• Joint modeling of these statistics difficult with analytic methods 

• Thus, resort to simulations (PM + HOD) 

• Likelihood unknown → Implicit-Likelihood Inference

Simulation-based inference



Simulations
FastPM 2.5 Gpc/h 
28003 CDM particles 
+particle neutrinos 

Planck prior x 2 
on ΛCDM

•populate gravity-only 
simulations with 
galaxies using HOD 

•project on lightcone 
and add survey 
realism



Data Vector Use MOPED compression to reduce dimensionality.



Main posterior

(kmax = 0.15)

With conservative scale 
cut of kmax=0.15 hMpc-1, 
voids tighten upper bound 
on neutrino mass.



So far, more or less “toy examples”. 

Not the same level of trust as traditional analyses.



building trust



Issues away from the limit

• in the limit, any likelihood learnable 

• what is the limit? 

• infinite model expressivity (usually ok in cosmology) 

• ability to find good global optimum (usually ok) 

• infinite training set size / fast & accurate simulation codes

L = ∫p(x,θ)
ℒ ≈ ∑

𝗍𝗋𝖺𝗂𝗇𝗂𝗇𝗀 𝗌𝖾𝗍

ℒ𝖺𝗉𝗉𝗋𝗈𝗑



Implicit Likelihood Inference in Crisis?

Want to be along diagonal



Implicit Likelihood Inference in Crisis?

[Homer, Friedrich, Gruen 2024]



Implicit Likelihood Inference in Crisis?

[Bairagi, Wandelt, Villaescusa-Navarro 2025]



So far, more or less “toy examples”. 

Not the same level of trust as traditional analyses.



So far, more or less “toy examples”. 

Not the same level of trust as traditional analyses. For good reason! 

Stage-IV deluge of data will make the problem much more challenging… 

Now is the time to become clever: 
— run simulations for cheaper 
— run them where it counts 
— combine simulations of different qualities 

Some promising approaches developed already!



Scaling up
• (ML) accelerated simulations [e.g., Jamieson] 

• “painting” into simulations [gas, galaxies, …] 

• sequential inference [e.g., Cole] 

• hybrid analytic & SBI [Modi&Philcox] 

• multi-fidelity



Multi-fidelity

[LT, A.Bayer, N.Takeishi 2025]

large low-fidelity set(s) 
e.g., linear theory + 2LPT + particle-mesh + tree + HOD + SAM

tiny low-fidelity set(s) 
e.g., hydrodynamic



Multi-fidelity
simplest idea: transfer learning via weight initialization

embedding networks

normalizing flows



Multi-fidelity
simplest idea: transfer learning via weight initialization

embedding networks

normalizing flows

Pros: 
•simple 
•surprisingly effective 

Cons: 
•clearly suboptimal 
•architecture constrained 
•can be unstable



Multi-fidelity
improvement: feature matching & knowledge distillation

feature matching

knowledge distillation



Multi-fidelity
improvement: feature matching & knowledge distillation

L = ∫p(x,θ)
ℒ

≈ ∑
𝗍𝗋𝖺𝗂𝗇𝗂𝗇𝗀 𝗌𝖾𝗍

ℒ + ∑ λaRa

typical variance reduction at 
cost of introducing a bias



Multi-fidelity

Pros: 
•very flexible (structure, levels) 
•“soft”: often better 

Cons: 
•multiple hyperparameters 
•heuristics 

→ improvement work in progress

improvement: feature matching & knowledge distillation



Multi-fidelity: results

synthetic examples 
(lower is better for all)

10D Gaussian

SLCP



Multi-fidelity: results

cosmology example (lower is better for all)

synthetic examples 
(lower is better for all)

10D Gaussian

SLCP



• Simulation-based inference = machine learning method to solve inverse problems 
defined implicitly through a simulator 

• Simulation-based inference has proven viability in simple examples: 

- weak lensing (e.g., HSC Y1) 

- galaxy clustering (e.g., SDSS CMASS) 

• In order to make it a standard tool, need to increase simulation quality while reducing 
training cost 

- sequential methods 

- learning corrections 

- combine with traditional approaches for large scales 

- multi-fidelity training 

• Have demonstrated a regularization method towards multi-fidelity training

Summary




