Cosmology with Quasars Proper Motion: Constraining the anisotropic expansion of the Universe

Rencontres du Vietnam 2025

Presented by:

Nguyen Phu Huy^{1, 2}

Supervisor:

Dr. Calum Murray³

¹University of Science and Technology of Hanoi ²University of Rome "Tor Vergata" ³CEA-Saclay, Université Paris Saclay

Aberration Effect

Aberration Effect

Aberration Effect

Proper Motion Dipole

If the observer is accelerating
 ⇒ apparent proper motion point towards the direction of acceleration ⇒ dipole signal

Proper Motion Dipole

If the observer is accelerating
 ⇒ apparent proper motion point towards the direction of acceleration ⇒ dipole signal

∧CDM ⇒ the Universe is isotropic and homogeneous on large scale
 ⇒ Dipolar pattern only for the distance objects

Proper Motion Dipole

If the observer is accelerating
 ⇒ apparent proper motion point towards the direction of acceleration ⇒ dipole signal

∧CDM ⇒ the Universe is isotropic and homogeneous on large scale
 ⇒ Dipolar pattern only for the distance objects

Solar System moving around Milky Way
 ⇒ create apparent proper motion + dipole

Higher degree of ℓ (correspond to smaller scales) leads to more sophisticated patterns

Quasar Samples

Conditions

- Full-sky
- High-precision astrometry
- High purity and completeness

The auto-correlation power spectrum shows how similar the proper motions of quasars are across different angular scales on the sky.

The auto-correlation power spectrum shows how similar the proper motions of quasars are across different angular scales on the sky.

The auto-correlation power spectrum shows how similar the proper motions of quasars are across different angular scales on the sky.

- Expect zero value of C_ℓ for higher multipoles (ℓ ≥ 2)
- Existence of multipoles probably due to:
 - the systematics such as: scanning strategy, stellar density, etc.
 - Noise
 - Inhomogeneity and anisotropy (less likely)

The auto-correlation power spectrum shows how similar the proper motions of quasars are across different angular scales on the sky.

Aim:

- Constraining the dipole
- Explaining for the existence of multipoles

Inference Model

Applied Bayes theorem:

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}$$

where H is the hypothesis (model) and E is the evidence (observational data)

Model:

Dipole

Gaia

Quaia

Dipole

Gaia

- This is our acceleration with respect to the distant universe
- Align with previous work:
 (a_x, a_y, a_z) = (-0.07 ± 0.41, -4.30 ± 0.35, -2.64 ± 0.36) µas/yr (Klioner et al. 2020)
- Larger uncertainties

Dipole at different redshift

Dipole at different redshift

Dipole at different redshift

what!!!

- Amplitudes don't present significant dependence on z
- Offset of gx at 4th redshift bin may due to systematics since quasars there are much fainter (need to investigate more)
- Next task: Explaining the multipoles

Lemaitre-Tolman-Bondi (LTB) Void Model

ACDM model: Universe is isotropic and homogeneous on large scale

LTB void model: Universe is radially homogeneous but isotropic if the observer is at the center of the Universe

Lemaitre-Tolman-Bondi (LTB) Void Model

off-center observer

Off-center observer
 ⇒ anisotropic
 expansion ⇒ CP

Lemaitre-Tolman-Bondi (LTB) Void Model

- Off-center observer ⇒ anisotropic expansion ⇒ CP
- In FRW metric, $\Delta y = y2 - y1 = 0$ In anisotropic metric, $\Delta y \neq 0$
- $CP \Rightarrow proper motion$

IN PROGRESS!

(Quartin et al. 2009)

Conclusion

Summarize:

- Revealed the existence of multipoles in proper motion field
- Robustly measured the Solar System acceleration from proper motion field, but need to check for quasars at very high redshift

Future:

- Constraining the LTB void model
- Checking if proper motion caused by CP contribute significantly to the multipoles

THANK YOU FOR LISTENING!