KiDS-Legacy

Cosmic shear results from the complete Kilo-Degree Survey

Benjamin Stölzner on behalf of all KiDS members

21st Rencontres du Vietnam on Cosmology

KiDS-Legacy

Cosmic shear results from the complete Kilo-Degree Survey

Wright, Stölzner et al. 2025:

"KiDS-Legacy: Cosmological constraints from cosmic shear with the complete Kilo-Degree Survey"

Stölzner, Wright et al. 2025:

"KiDS-Legacy: Consistency of cosmic shear measurements and joint cosmological constraints with external probes"

Image credit: ESO

 ESO survey, specifically designed for weak lensing science

- ESO survey, specifically designed for weak lensing science
- Covering 1347 deg² in four photometric bands

Image credit: ESO

- ESO survey, specifically designed for weak lensing science
- Covering 1347 deg² in four photometric bands
- Partner survey VIKING provides five near-infrared bands

Image credit: ESO

- ESO survey, specifically designed for weak lensing science
- Covering 1347 deg² in four photometric bands
- Partner survey VIKING provides five near-infrared bands
- Median r-band 5σ limiting magnitude: 24.8
- Median seeing: 0.7"

Image credit: ESO

KiDS-Legacy publications

- The fifth data release of the Kilo Degree Survey: Multi-epoch optical/NIR imaging covering wide and legacy-calibration fields (arXiv:2503.19439)
- KiDS-Legacy: Cosmological constraints from cosmic shear with the complete Kilo-Degree Survey (arXiv:2503.19441)
- KiDS-Legacy: Consistency of cosmic shear measurements and joint cosmological constraints with external probes (arXiv:2503.19442)
- KiDS-Legacy: Covariance validation and the unified OneCovariance framework for projected large-scale structure observables (<u>arXiv:2410.06962</u>)
- KiDS-Legacy: Redshift distributions and their calibration (arXiv:2503.19440)
- KiDS-Legacy calibration: Unifying shear and redshift calibration with the SKiLLS multi-band image simulations (arXiv:2210.07163)
- KiDS-Legacy: Angular galaxy clustering from deep surveys with complex selection effects (arXiv:2410.23141)

KiD5

Weak Lensing

Image credit: RUB

Imaging Surveys for cosmology

More area (generally useful)

- More area (generally useful)
- Improved astrometric and photometric calibrations (better shapes & photo-z)

- More area (generally useful)
- Improved astrometric and photometric calibrations (better shapes & photo-z)
- Multi-epoch i-band observations (better photo-z & systematics)

- More area (generally useful)
- Improved astrometric and photometric calibrations (better shapes & photo-z)
- Multi-epoch i-band observations (better photo-z & systematics)
- Increased redshift calibration data (better redshift calibration)

- More area (generally useful)
- Improved astrometric and photometric calibrations (better shapes & photo-z)
- Multi-epoch i-band observations (better photo-z & systematics)
- Increased redshift calibration data (better redshift calibration)
- Improved selection function (enables photometric clustering)

- More area (generally useful)
- Improved astrometric and photometric calibrations (better shapes & photo-z)
- Multi-epoch i-band observations (better photo-z & systematics)
- Increased redshift calibration data (better redshift calibration)
- Improved selection function (enables photometric clustering)
- NIR Imaging releases (enables more sophisticated photo-z)

- More area (generally useful)
- Improved astrometric and photometric calibrations (better shapes & photo-z)
- Multi-epoch i-band observations (better photo-z & systematics)
- Increased redshift calibration data (better redshift calibration)
- Improved selection function (enables photometric clustering)
- NIR Imaging releases (enables more sophisticated photo-z)

Particular Focus on Legacy benefits of our data & analysis pipelines

KiDS-1000

Tension with Planck:

 $N_{\sigma} \approx 3$

Blinded results

Tension with Planck:

Blind A: $N_{\sigma} = 2.72$

Blind B: $N_{\sigma} = 0.73$

Blind C: $N_{\sigma} = 1.73$

Fiducial results

Combination with external datasets

Combination with external datasets

DESI Y1 BAO: $N_{\sigma} = 0.44$ (Adame et al. 2025)

Pantheon+: $N_{\sigma} = 0.23$ (Scolnic et al. 2022; Brout et al. 2022)

Combination with external datasets

DESI Y1 BAO: $N_{\sigma} = 0.44$ (Adame et al. 2025)

Pantheon+: $N_{\sigma} = 0.23$ (Scolnic et al. 2022; Brout et al. 2022)

DES Y3: $N_{\sigma} = 0.58$

(Dark Energy Survey and Kilo-Degree Survey Collaboration et al. 2023)

Combination with external datasets

DESI Y1 BAO: $N_{\sigma} = 0.44$

(Adame et al. 2025)

Pantheon+: $N_{\sigma} = 0.23$

(Scolnic et al. 2022; Brout et al. 2022)

DES Y3: $N_{\sigma} = 0.58$

(Dark Energy Survey and Kilo-Degree Survey Collaboration et al. 2023)

$$S_8 = 0.814^{+0.011}_{-0.012}$$

$$\Omega_m = 0.307^{+0.011}_{-0.011}$$

Internal consistency

Internal consistency

KiDS-Legacy data

Internal consistency

Internal consistency Metrics

Bayes factor, Suspiciousness

Internal consistency Metrics

Bayes factor, Suspiciousness

Internal consistency Metrics

Bayes factor, Suspiciousness

Internal consistency Data splits

Data splits

Data vector level:

Redshift bins

Data splits

Data vector level:

Redshift bins

Data splits

Data vector level:

Redshift bins

$$N_{\sigma}^{\text{Bin 2}} = 1.09$$

Data splits

- Redshift bins
- Auto- vs cross-correlation

Data splits

 $N_{\sigma}^{\text{AC/CC}} = 0.06$

- Redshift bins
- Auto- vs cross-correlation

Data splits

- Redshift bins
- Auto- vs cross-correlation 😞
- Scales

Data splits

Data vector level:

- Redshift bins
- Auto- vs cross-correlation Par Auto-
- Scales

Catalogue level:

KiDS-North vs KiDS-South

Data splits

Data vector level:

- Redshift bins
- Auto- vs cross-correlation Laborated Paragraphics Auto- vs cross-correlation
- Scales

Catalogue level:

- KiDS-North vs KiDS-South
- Red vs Blue

Data splits

Data vector level:

- Redshift bins
- Auto- vs cross-correlation 😞
- Scales

Catalogue level:

- KiDS-North vs KiDS-South
- Red vs Blue

What's next? KiDS-Legacy follow-up analyses

What's next?

KiDS-Legacy follow-up analyses

- ullet Constraints on extended cosmological models beyond $\Lambda {\sf CDM}$
- Constraints on Horndeski gravity
- Cosmic shear with blue galaxies
- 3x2pt: cosmic shear + galaxy clustering + galaxy-galaxy lensing (GGL)
- 6x2pt: cosmic shear + spectroscopic and photometric clustering + spectroscopic and photometric GGL + spectroscopic-photometric crossclustering
- Constraints from simulation-based inference
- And more!

Coming soon

KiDS-Legacy: Constraints on Horndeski gravity from weak lensing combined with galaxy clustering and cosmic microwave background anisotropies (working title)

Benjamin Stölzner¹[⋆], Robert Reischke², Matteo Grasso³, Matteo Cataneo², Benjamin Joachimi⁴, Arthur Loureiro^{5,6}, Alessio Spurio Mancini⁷, and KiDS collaboration⁸

Coming soon

KiDS-Legacy: Constraints on Horndeski gravity from weak lensing combined with galaxy clustering and cosmic microwave background anisotropies (working title)

Benjamin Stölzner^{1*}, Robert Reischke², Matteo Grasso³, Matteo Cataneo², Benjamin Joachimi⁴, Arthur Loureiro^{5, 6}, Alessio Spurio Mancini⁷, and KiDS collaboration⁸

$$\Phi_{W} = \frac{\Phi + \Psi}{2} = -\frac{3\Omega_{m}H_{0}^{2}}{2c^{2}k^{2}a}\delta_{m}\Sigma(k, a)$$

$$C_{\text{GG}}^{ij}(\ell) = \int_0^{\chi_{\text{H}}} d\chi \, \frac{W_{\text{G}}^i(\chi)W_{\text{G}}^j(\chi)}{f_{\text{K}}^2(\chi)} \Sigma^2 \left(\frac{\ell + 1/2}{f_{\text{K}}(\chi)}, z(\chi)\right) P_{\text{m,nl}}^{\text{MG}} \left(\frac{\ell + 1/2}{f_{\text{K}}(\chi)}, z(\chi)\right)$$

Conclusions

- No S_8 tension
- Fully consistent with CMB constraints from Planck
- Combination of effects moved KiDS from $\sim 3\sigma$ to $\sim 0.7\sigma$
- KiDS-Legacy is the most internally and externally consistent KiDS cosmic shear analysis

KiDS-Legacy

KiDS-Legacy

KiDS-Legacy

Disclaimer: I do not take responsibility for the creation of this meme

