The Dark Energy Survey Cosmology from Weak Lensing and Galaxy Clustering

David Sánchez-Cid

Postdoctoral Research Associate, University of Zurich On behalf of the DES Collaboration

21st Rencontres du Vietnam | August 2025

Universitä Zürich^{UZH}

Physics Institute

The LCDM Model

Our current Standard of Cosmology

A flat Universe with Dark Energy (as a cosmological constant, Λ) + Cold Dark Matter.

Based on General Relativity.

Became the standard model after observations of Type Ia supernovae and the Cosmic Microwave Background.

From the Early Universe to today

Growth of structure

Gravitational collapse sourced by $\Omega_{\rm m}$ vs. expansion due to the dark energy

Beyond Dark Energy

Key Open Questions in Cosmology

What is **Dark Matter?**

What is the mass of the neutrinos?

Hints of dynamical Dark Energy?

Why is there an S_8 tension?

Why is there and \mathbf{H}_0 tension?

Into the era of precision cosmology with galaxy surveys

redshift / distance

Observed galaxies used as:

- (biased) tracer of the dark matter large-scale structure,
- background light, to statistically probe the matter distribution.

Weak gravitational lensing

Tracing the Large-Scale Structure

Light from distant galaxies is weakly distorted by mass along the line-of-sight Distortion changes galaxy shapes in a coherent way (WL signal < 1% vs intrinsic alignment ~30%) Shear signal decomposed into gravitational lensing, intrinsic alignments, and noise:

$$\gamma = \gamma_G + \gamma_{IA} + \epsilon_0$$

Requires statistical measurement over millions of galaxies → wide galaxy surveys

Summarising field-level information

Correlation between source z-bin 1 and source z-bin 1

2-point Statistics

Slicing in redshift bins

Matter distribution is mostly Gaussian -> encode field information in 2-point correlation functions

In tomographic redshift bins to learn about the evolution and growth of structure with time.

Summarising information from the **matter density** and shear fields.

Tomographic 2-point angular correlation function

A timeline of Weak Lensing cosmology

2000s 2010s 2020s

First cosmic shear measurements

Stage-III

SPRING, 2014

Stage-IV

Vera C. Rubin Observatory

Roman space telescope

cosmic shear

correlation of source galaxy shapes

$$egin{aligned} \xi_{+/-} &= \langle e_t(heta')e_t(heta'+ heta)
angle \ &- \langle e_ imes(heta')e_ imes(heta'+ heta)
angle \ &\propto \sigma_8^2 \end{aligned}$$

 $1 \times 2pt$

galaxy clustering

correlation of lens galaxy positions

$$w(heta) = \langle \delta(heta') \delta(heta' + heta)
angle$$

 $\propto b^2 \sigma_8^2$

galaxy-galaxy lensing

correlation between position of lenses and the shape of sources

$$\gamma_t = \langle \delta(heta') e_t(heta' + heta)
angle$$

 $\propto b\sigma_8^2$

$$2 \times 2pt$$

3x2pt is sensitive to S_8 , and is a powerful probe of dark energy, gravity:

$$S_8 \equiv \sigma_8 (\Omega_m/0.3)^{1/2}$$

3 imes 2pt

The Dark Energy Survey

A Flagship Photometric Galaxy Survey

- 570 Megapixel camera for the Blanco 4m telescope in Chile.
- Full survey 2013-2019
- Wide field: 5000 sq. deg. in 5 bands. *i*~24 magnitude.
- Growth of structure and **geometry** probes
- DES Year 6 results analysing: positions and shapes of > 140M galaxies.

Year 6 observations push to deeper redshift, with 50% higher source density

DES Year 6 3x2pt

The Final Analysis

Huge collaborative effort coordinated by Martin Crocce and Matthew Becker, with several analysis teams building blocks of the analysis.

Year 6 analysis is built on top of previous DES efforts with major advancements:

- Color dependent PSF modeling, T. Schutt et al. OJA, 8, 2025,
- Modeling on small scales, DSC, A. Ferte et al. (in prep.)
- Photometric redshift uncertainty calibration [B. Yin et al., G. Giannini et al., D'Assignies et al. (*in prep*)], among other improvements.

DES Year 6 3x2pt

The Final Analysis

Huge collaborative effort coordinated by Martin Crocce and Matthew Becker, with several analysis teams building blocks of the analysis.

Year 6 analysis is built on top of previous DES efforts with major advancements:

- Color dependent PSF modeling, T. Schutt et al. OJA, 8, 2025,
- Modeling on small scales, DSC, A. Ferte et al. (in prep.)
- Photometric redshift uncertainty calibration [B. Yin et al., G. Giannini et al., D'Assignies et al. (in prep), among other improvements.

Dark Energy Survey – from pixels to cosmology

LCDM — WL+LSS — Redshifts — Shapes — Clustering — Simulations — Theory — Results
University of Zurich | David Sanchez Cid 21st Rencontres du Vietnam

Source and lens galaxy samples

Source sample = Metadetection [M. Yamamoto, M. R. Becker et al.] ~ 150 million galaxies $n_{eff} = 8$ gals / arcmin2 and $\sigma_e = 0.272$ Reduced shear bias (e.g. in blended objects). 50% more sources than Y3.

Lens sample = MagLim [A. Porredon, M. Crocce et al.]

11 million galaxies with mag cut: i < 4 zphot + 18

Better star-galaxy cleaning and mitigation of observing conditions,

Redshift estimates with SOMPZ + WZ

Redundancy is relevant!

- **Alternative lens sample** = broad \Box^2 Redmagic Twice more galaxies, slightly worse photo-z than Year 3
- Alternative source sample = BFD [bayesian fourier domain, Bernstein and Armstrong 2014]
 200 million shapes a bit worse shape noise than Metadetect.

Analysis choices for DES Year 6

Pushing to Smaller Scales

Modeling effort lead by DSC, A. Ferte, and J. Blazek, to build the likelihood pipeline, compute the analytical covariance and validate modeling choices (blinded!):

- HMCode 2020 for **nonlinear DM P(k)**
- Linear and non-linear (EPT) galaxy bias analyses
- Inclusion of fixed **baryon feedback** signal with log(Tagn) = 7.7 and flat prior on **neutrino mass**.
- Intrinsic alignment
 - TATT 4 parameters for 3x2 and 2x2 (bta=1)
 - NLA and TATT for 1x2
- Mitigate poorly described data points with **scale cuts:** i) linear scales down to 6 Mpc/*h*, and ii- non-linear down to 4 Mpc/*h*.

DES Preliminary

Unaccounted baryonic feedback can bias cosmology substantially

Ensuring robust and unbiased cosmology constraints

Scale cuts definition and validation with synthetic data

Scale cuts for the linear galaxy bias analysis efficiently **mitigate unmodeled systematics**...

... keeping potential biases on the best-constrained parameters **below the 0.5\sigma** threshold.

Modeling Calibration Uncertainty

Shedding Light with Simulations

Balrog simulated images (D. Anbajagane et al.) tailored to DES conditions to derive priors for:

- **Lens Magnification** marginalised with a Gaussian prior centered on Balrog measurements [E. Legnani et al.]
- **Redshift distributions** marginalised over their shapes using PCA-like modes [G. Bernstein et al.] and correlating source redshift and shear bias.

Correlation matrix for source priors

What to expect from DES Year 6?

Mock signal!

Real data signal **passed** all **unblinding** tests!

Measured scales in [0, 1000] arcmin but not all are usable!

Analysis	Scale cuts	ξ_+	ξ	γ_t	$w(\theta)$	Total	SNR
Cosmic shear NLA Cosmic shear TATT-4	$\Delta \chi^2 = 3.5$ $\Delta \chi^2 = 5$	178 183			-	267 282	37.52 39.76
2×2 pt Λ CDM Linear 3×2 pt w/Λ CDM Linear	(9, 6) Mpc/h (9, 6) Mpc/h + $\Delta \chi^2 = 5$			312 312			114.71 115.85
2×2 pt Λ CDM Non-linear 3×2 pt w/Λ CDM Non-linear	(4, 4) Mpc/h (4, 4) Mpc/h + $\Delta \chi^2 = 5$				87 87		171.58 172.2
3x2pt LCDM Year linear							87

32% higher SNR

97% higher SNR

What to expect from DES Year 6?

Total of 50 correlation functions!

The sustained gain of 1x2pt + 2x2pt

Linear galaxy bias analysis

More than a factor of 2 increase in FoM in LCDM in 3x2pt wrt shear alone.

3x2pt is very **robust** to systematics in general + IA and galaxy bias

$$\mathsf{FoM}_{\Omega_m,\sigma_8} = 1/\det\left(\mathsf{Cov}_{\Omega_m,\sigma_8}^{-1}
ight)$$

Case	$\text{FoM}_{\Omega_{\text{m}},\sigma_{8}}$	Relative Difference (%)
DES Y6 - $1 \times 2pt$	1812.45	-
DES Y6 - 2×2 pt	2019.41	11.42%
DES Y6 - $3 \times 2pt$	4942.84	172.72%

DES Y3 - 3x2pt 2068

What to expect from DES Year 6?

Linear galaxy bias analysis

High-dimensional/complex parameter space with > 50 parameters

Case	$\operatorname{FoM}_{\Omega_{\mathrm{m}},\sigma_8}$	Relative Difference (%)
DES Y3 - 3×2 pt	2011.20	-
DES Y6 - $3 \times 2pt$	4942.84	145.77%

Also, more than a factor of 2 gain in compared to Year 3 linear (with 4 lens bins and no SR)

Case	$\Delta_{\sigma} (\Omega_m)$	Δ_{σ} (σ_8)	Δ_{σ} (S_8)
RefDES Y3 - 3×2 pt		_	-
DES Y6 - $1 \times 2pt$	15.21	-6.14	-19.48
DES Y6 - 2×2 pt	1.78	-8.55	-3.59
DES Y6 - 3×2 pt	-22.39	-27.2	-34.59

DES Year 6 constraints to beyond LCDM models

Dynamical dark energy and more

Studies beyond LCDM lead by O. Alves, S. Lee, and M. Raveri.

In the light of DESI BAO + SN + CMB w0wa, DES can contribute to the discussion with:

- geometry DES SN + BAO (previous talk,)
- growth of structure

Adding 3x2pt to DESI BAO + DES SN -> \sim 46% gain $_{-1}$ in σ (wa)

+ modified gravity, curvature, massive neutrinos, binned σ_{g} , ...

Challenges of a Growing Parameter Space

Projection effects and computational cost

- i) High-dimensional parameter space → projection / volume effects shift inferred values (e.g., neutrino mass, galaxy bias).
- ii) Large-scale MCMC campaigns are computationally expensive \rightarrow require P(k) emulators and optimized sampling. Other ideas?
- **1.3M CPU-hours** total to get our first version of scale cuts for shear, 2x2pt and 3x2pt $\Lambda/wCDM$ and in linear and non-linear galaxy bias model (estimate by Agnes Ferte)

Cosmology with DES Year 6 3x2pt

Key Takeaways

- DES sets the benchmark for 3×2pt cosmology, with forecasted Y6 surpassing Y3 constraining power.
- Analysis improvements: deeper imaging, larger catalogs, improved 2PCF and redshift calibration, refined small-scale modeling.
- Constraints on w/LCDM and beyond, informing w_0w_a dark energy models via growth of structure.
- Methodology provides a foundation for Euclid, Roman, and Rubin analyses.
- Tackling theoretical and computational challenges will ensure success for next-generation surveys.

Contact: david.sanchezcid@physik.uzh.ch

