

Implications for cosmological expansion models from the final DES BAO and SNe

Kwan Chuen Chan Sun-Yat Sen University

On behalf of the Dark Energy Survey collaboration

Rencontres du Vietnam: Cosmology Quy Nhon, 13 Aug 2025

Dark Energy Survey (DES)

- Dark Energy Survey (DES) is an ongoing photometric survey.
- Use blanco 4-meter telescope at Cerro
 Tololo Inter-American Observatory in Chile
- Dark Energy Camera, Field of view: 3 sq deg, 570-megapixels CCD

DES data releases

- •DES major release: SV, Y1, Y3, and (Y5) Y6.
- •Y6 is the last official analysis, data taken from Aug 2013 to Jan 2019, 760 nights

Sevilla-Noarbe +, 2011.03407

Key probes of DES

- Probe the properties of DE in 4 key probes
- Weak lensing light distortion by gravity, geometry, structure
- Galaxy clustering especially BAO Standard ruler, structure
- SNe Standard candles, geometry
- Cluster/halo abundance Growth of (collapsed) structure
- Complementary in systematics and cosmological parameter degeneracy control

Survey modes

- Wide field survey: ~5000 sq. deg, grizY bands, optimized for weak gravitational lensing, galaxy clustering, and galaxy clusters.
- Supernova survey: 10 SNe fields, ~3 sq. deg each, griz bands, optimized for SNe search

Y6 BAO + Y5 SNe on expansion model, 2402.10696

S. Avila

J. Mena-Fernández

J. Muir

A. Porredon

Dark Energy Survey: implications for cosmological expansion models from the final DES Baryon Acoustic Oscillation and Supernova data

Y6 BAO, 2402.10696

L. Toribio, R. Cawthon, others! ++

Dark Energy Survey: A 2.1% measurement of the angular Baryonic Acoustic Oscillation scale at redshift $z_{\text{eff}} = 0.85$ from the final dataset

Y5 SNe, 2401.02929

DES SN team

+ A. Carr, M. Sullivan, M. Sako, R. Kessler, J. Lee, E. Kovacs, M. Smith, and others! ++

The Dark Energy Survey: Cosmology Results With $\sim\!1500$ New High-redshift Type Ia Supernovae Using The Full 5-year Dataset

Y6 BA0

arXiv:2402.10696

Baryonic Acoustic Oscillations (BAO)

- Arised from acoustic oscillations in primordial plasma
- Imprint preserved in the LSS distribution
- A standard ruler in the late universe, ~150 Mpc
- Measured in numerous analyses, mostly spectroscopic

Physical constraint from BAO

- Spec-z surveys can constrain ${\cal H}$ and ${\cal D}_{\cal M}$
- Photometric surveys, imprecise redshift, only constrain ${\cal D}_{\!M}$
- BAO measurements require large volume
- Photometric surveys can survey large volume with deep magnitude quickly

Radial BAO $\longrightarrow H$ Transverse BAO $\longrightarrow D_M$

Y6 BAO sample overview

- Gold sample → BAO sample
- Area: 4273 sq. deg
- Redshift range: [0.6,1.2], divided into 6 tomographic bins, each of width 0.1
- Number of gals: 15 937 556, x 2 wrt Y3

$$1.7 < i - z + 2(r - i),$$

 $17.5 < i < a + bz_{ph},$
 $i < 22.5,$
 $0.6 < z_{ph} < 1.2.$

Red galaxy selection

Maximizing the BAO constraint

Crocce +, 1712.06211

J. Mena-Fernández +, 2402.10697

Y6 sample properties

Y6

Bin	$\langle z_{ m ph} angle$	$N_{ m gal}$	σ_{68}
$0.6 < z_{\rm ph} < 0.7$	0.654	2,854,542	0.0232
$0.7 < z_{\rm ph} < 0.8$	0.752	$3,\!266,\!097$	0.0254
$0.8 < z_{ m ph} < 0.9$	0.844	$3,\!898,\!672$	0.0292
$0.9 < z_{\rm ph} < 1.0$	0.929	$3,\!404,\!744$	0.0358
$1.0 < z_{\rm ph} < 1.1$	1.013	$1,\!752,\!169$	0.0403
$1.1 < z_{\rm ph} < 1.2$	1.107	761,332	0.0415

$N_{\rm gal}$	σ_{68} (*)
1,478,178	0.0246
1,632,805	0.0279
1,727,646	0.0298
1,315,604	0.0363
877,760	0.0455

$$z_{\text{eff}} = 0.867, A = 4273.42 \text{deg}^2$$

$$z_{\text{eff}} = 0.835, A = 4108.47 \text{deg}^2$$

• Double in sample size, better photo-z and one more redshift bin

Photo-z

- DNF Photo-z, trained using grizY on a large of set spec-z data
- Redshift uncertainty is ~0.03(1+z)

Bin	$N_{ m gal}$	σ_{68}
$0.6 < z_{\rm ph} < 0.7$	2,854,542	0.0232
$0.7 < z_{ m ph} < 0.8$	$3,\!266,\!097$	0.0254
$0.8 < z_{\rm ph} < 0.9$	3,898,672	0.0292
$0.9 < z_{\rm ph} < 1.0$	3,404,744	0.0358
$1.0 < z_{\rm ph} < 1.1$	1,752,169	0.0403
$1.1 < z_{\rm ph} < 1.2$	761,332	0.0415

$$\sigma_{68} \approx \frac{z_{\rm p} - z_{\rm s}}{1 + z_{\rm s}}$$

True-z distribution calibration

- Use DNF PDF as proxy
- Corrected by Shift & Stretched using Clustering-z (z<1) and VIPERS spec-z (z>1)
- Shift in mean and stretch in the spread

ICE-COLA mock catalog

- ICE-COLA mocks are used for pipeline testing
- 1952 mocks, match to Y6 properties

Ferrero +, 2107.04602

Three clustering statistics

Angular correlation function (ACF): w

KCC +, 1801.04390

• Angular power spectrum (APS): C_{ℓ}

Camacho +, 1807.10163

• Projective correlation function (PCF): ξ_p

Ross +, 1705.05442, KCC+, 2110.13332, 2210.05057

 $AVG = w_1ACF + w_2APS + w_3PCF$

Consensus measurements

BAO model fitting

$$P(k,\mu) = (b + \mu^2 f)^2 \left[(P_{\text{lin}} - P_{\text{nw}}) e^{-k^2 \Sigma^2} + P_{\text{nw}} \right]$$

P(k) model

$$M(x) = BT_{\mathrm{BAO},\alpha}(x') + A(x)$$

Parameter α is introduced to match the BAO scale in the data to that in the template

Clustering statistics template T: w, C_{ℓ} , ξ_{p}

Nuisance para +
$$\alpha = \frac{D_{\mathrm{M}}}{r_{\mathrm{S}}} \frac{r_{\mathrm{S}}}{D_{\mathrm{M}}}$$
 fiid

Covariance

Data measurement

Y6 BA0 measurements

- Different statistics are consistent with each other
- 3.5 σ detection of BAO

fiducial Planck

$$lpha = 0.9571 \pm 0.0196 \; [stat.], \ \pm 0.0041 \; [sys.], \ lpha = 0.9571 \pm 0.0201 \; [tot.].$$

APS, C_{ℓ} $\alpha = 0.9617 \pm 0.0224$

PCF, $\xi_{\rm p}$ $\alpha = 0.9553 \pm 0.0201$

Individual bin measurements

No detection in first bin, same in Y1 and Y3

Robustness tests

• Change in the best fit α is within 1σ

Y6 BA0 measurement

- Y6 is the most precise photometric BAO measurement
- Most precise transverse BAO measurement at z ~ 0.8, at least before DESI

The physical quantity directly constrained by transverse BAO

$$\frac{D_{M}}{r_{s}}$$

Y6 BA0 measurement

• Even after DESI, still competitive

The physical quantity directly constrained by transverse BAO

 $\frac{D_{M}}{r_{s}}$

Linear tidal alignment

- Tidal field causes tides on earth
- Can also distort galaxy shape

Forces relative to the center of the Earth

Linear alignment model

$$\gamma(\boldsymbol{x},z) = -\frac{C_1 \bar{\rho}_{\text{m0}}}{D} (\partial_{xx} - \partial_{yy}, 2\partial_{xy}) \nabla^{-2} \delta$$

Intrinsic alignment: Tidal field causes radial shear in nearby galaxies, a contamination in weak lensing

Tidal effect of the BAO galaxies

 The presence of the BAO matter is the difference from the no-BAO universe, suffice to consider the tidal effect of the BAO matter

van Dompsele +, 2301.04649

Gravitational acceleration due to BAO galaxies

- Vanish in region I
- In region II, radially inward with magnitude increasing with distance from center
- · Radially inward, with magnitude decreasing with distance in region III

GI BAO signal in galaxy-ellipticity correlation

• First GI measurement obtained by cross correlating CMASS galaxies (0.43M, 0.43<z<0.7) with DESCaLS ellipticity (cross matching to CMASS gal)

More than 3σ detection, but the constraint is ~ 2σ from GG-only constraint

$$\xi_{g+,0}(r) = \frac{2}{3}\widetilde{C}_1 b_g \int_0^\infty \frac{k^2 dk}{2\pi^2} P_{\delta\delta}(k) j_2(kr)$$

Xu + , Nature Astronomy, 2023

Transverse GI BAO

• With DES data, similar to GG BAO, can only measure transverse GI BAO

$$w_{\text{gt}}(\theta) = \int \frac{dk}{2\pi} kP(k)F(k\theta)$$
$$F(k\theta) = b_{\text{g}} \int d\chi W_{\text{g}}(\chi)W_{\gamma}(\chi)C'_{1}D(\chi)J_{2}(k\theta\chi)$$

GI BAO from DES data

 DES Y6 BAO galaxy sample (0.6<z<0.9) cross correlating with the crossmatched Y3 shear sample

KCC +, in preparation

The GI BAO detection is only ~0.5 σ , but it is consistent with GG BAO measurement

DES Y6 BAO

Y5 SNe

DES SNe observations

- Observed in 5 Yr period
- 10 fields, 8 shallow, 2 deep, covering
 27 sq. deg
- Detection of transients using Difference Image Analysis
- Spectroscopic follow-up of the host in OzDES survey

Publication of the first ~200
Survey run between DES SN 3YR
2014-2019 2019

Publication of the results from the DES SN 5YR 2023-2024

DES SNe workflow

The DES-5YR analysis keys:

- Building the Data Set: find SNe, measure and calibrate their photometry, find the SN host galaxy;
- 2. Simulating DES-SN samples that look like the observed sample;
- 3. Classification to get a pure sample of SNe Ia
- 4. Modelling SN dust extinction, SN progenitor physics
- 5. Error budget: Systematic uncertainties > Statistical uncertainties

DES-SN5YR analysis overview

Data:

- Calibration (Burke et al. 2018, Brout et al. 2022, Rykoff et al. 2023)
- SN photometry (Brout et al. 2019, Sanchez et al. 2024)
- SN spectroscopy (Smith et al. 2020a)
- DCR and chrom (Lasker et al. 2018, Lee&Acevedo et al. 2023)
- Host galaxy redshifts and properties (Lidman et al. 2020, Carr et al. 2021, Wiseman et al. 2020/2021, Kelsey et al. 2023)

Simulations:

- Survey selection effects (Kessler et al. 2019a, Vincenzi et al. 2020)
- SN Ia intrinsic and dust properties (Brout&Scolnic 2021, Popovic et al. 2021a/b, Wiseman et al. 2022) and rates (Wiseman et al. 2021)
- Contamination (Vincenzi et al. 2019/2020, Kessler et al. 2019b)

Analysis:

Pipeline and Overview (Hinton et al. 2020, Vincenzi et al. 2024)

- Light-curve fitting (Taylor et al. 2023)
- SN classification (Möller & de Boissière 2020, Qu et al. 2021, Vincenzi et al. 2021, Moller et al. 2022)
- "BEAMS" and bias corrections (Kessler & Scolnic 2017), unbinning the SN Hubble diagram (Brout et al. 2020, Kessler et al. 2023)
- Effects of host galaxy mismatch (Qu et al. 2023)
- Cosmological contour validation (Armstrong et al. 2023)

Cosmological results: DES Collaboration 2024

Testing non-standard cosmological models (Camilleri et al. 2024)

5 Yr SNe sample

- Classified as SNe Ia based on photometry info using machine-learning method
- Host galaxy redshift confirmed spectroscopically
- 1635 DES SNe in 0.10< z
 <1.13, largest and deepest high-z SN sample from a single telescope ever compiled
- Combine with 194 SNe Ia at low z, 0.025<z<0.10 from external catalogs

DES collaboration, arXiv:2401.02929

DES SNe constraint

 Ω_m value reflects tension btw DES SNe other datasets in ΛCDM

DES SNe favors evolving DE, but the constraint is weak

DES collaboration, arXiv:2401.02929

Joint Y6 BAO & Y5 SNe analysis

arXiv:2503.06712

See also Notari +, arXiv: 2411.11685

How much cosmological constraint can we get from the DES BAO and SNe?

- Can we get a DES-only constraint?
- Are BAO and SNe consistent with each other? If so, in what model?
- How much constraint from these probes and their combination with others such as CMB?

DES BAO + SNe data

- DES BAO, 5 tomographic bin data from z=0.6 to 1.2, 17M galaxies
- 1829 SNe: 1635 DES SNe + 194 low-z SNe from external samples
- Complementary redshift range

External datasets

- Planck CMB, temperature and polarization
- Angular scale of the acoustic peak $heta_*$
- Comoving scale of the acoustic peak $r_{
 m d}$
- Age of the universe from globular clusters
- Big Bang Neosynthesis on $\Omega_{\rm b}h^2$

Tension metrics

 Compute how much probability mass that the new model is favored relative to the reference one

$$\Delta(D, M) \equiv \int_{P(\mathbf{p} \mid D, M) > P(\mathbf{p}^* \mid D, M)} P(\mathbf{p} \mid D, M) d\mathbf{p}$$

Phrase the results in terms of sigma as if it is Gaussian distributed

	Deviations from Λ CDM (σ)		
Dataset	kΛCDM	w CDM	w ₀ w _a CDM
BAO + SN + BBN	1.4	1.4	1.8
$BAO + SN + BBN + t_{U}$	_	_	2.0 (2.7)
BAO + SN + θ_{\star}	2.5	2.7	2.3
$BAO + SN + \theta_{\star} + BBN$	2.8	3.1	2.8
$BAO + SN + \theta_{\star} + BBN + t_{U}$	_	_	2.9 (2.8)
SN	1.3	1.6	2.0
CMB	3.0	1.7	2.5
SN + CMB	2.9	2.0	2.2
BAO + CMB	0.6	2.8	3.4
BAO + SN + CMB	1.2	1.8	3.2

Consistency of the datasets

• Check if the datasets are consistent with each other under a given model

The joint probability distribution of two independent datasets

$$\Delta \mathbf{p} \equiv \mathbf{p}_1 - \mathbf{p}_2$$

$$P(\mathbf{p}_1, \mathbf{p}_2|d_1, d_2) = P_1(\mathbf{p}_1|d_1)P_2(\mathbf{p}_2|d_2)$$

$$P(\Delta \mathbf{p}) = \int P_1(\mathbf{p})P_2(\mathbf{p} - \Delta \mathbf{p})d\mathbf{p}$$

No significant tension among datasets

$\Delta \equiv$	$\int_{P(\Delta \mathbf{p}) > P(0)}$	$P(\Delta \mathbf{p}) d\Delta \mathbf{p}$
	- (-I -)	

	Tension (σ)					
Datasets	ΛCDM	$k\Lambda CDM$	w CDM	w_0w_a CDM	νΛCDM	
BAO vs SN	0.5	0.0	0.0	0.3	0.2	
CMB vs SN	1.7	1.5	1.3	1.1	1.2	
CMB vs BAO	2.0	3.2	0.6	0.1	2.0	
SN vs BAO + θ_{\star}	2.4	-	-	_	-	
CMB vs $BAO + SN + BBN$	2.2	3.3	2.2	1.2	-	
SN vs BAO + BBN	0.4	-	- ,	-	-	
SN vs BAO + BBN + θ_{\star}	2.9	0.5	0.0	0.9	2.6	
BAO + CMB vs SN	2.1	1.5	2.5	1.6	2.1	
CMB vs BAO + SN + BBN + $t_{\rm U}$	1.5 (0.8)	-	-	0.9 (0.9)	_	

Tension in ACDM

- BAO + θ_* : $\Omega_{\rm m} = 0.255^{+0.021}_{-0.035}$
- CMB: $\Omega_{\rm m} = 0.305^{+0.008}_{-0.009}$
- SNe: $\Omega_{\rm m} = 0.353 \pm 0.017$
- These datasets give inconsistent constraints on parameters such as $\Omega_{\rm m}$

Tension in kCDM

- Curvature model, spatial curvature is allowed
- CMB: $\Omega_k = -23.6^{+4.2}_{-7.9} \times 10^{-3}$
- BAO + SN + BBN + θ_* : $\Omega_k = 45^{+15}_{-15} \times 10^{-3}$
- Inconsistent curvature constraint

$$\Omega_k = 1 - \Omega_{\rm m} - \Omega_{\Lambda}$$

Tension in wCDM

- CMB: weak constraint, $w = -1.32^{+0.12}_{-0.25}$
- SN prefers $w = -0.82^{+0.15}_{-0.11}$
- BAO + SN + θ_* : $w = -0.826^{+0.062}_{-0.047}$
- Inconsistent constraint on H_0 and Ω_{m}

w for DE is constant, but not necessarily -1

Consistent results in w_0w_a CDM

 Consistent constraint across various dataset combinations

$$w = w_0 + w_a(1 - a)$$

$$w_0 = -0.673^{+0.098}_{-0.097}$$

$$w_a = -1.37^{+0.51}_{-0.50}$$
BAO + SN + CMB

$$w_0 = -0.76 \pm 0.11$$

 $w_a = -0.79^{+0.87}_{-0.67}$ BAO + SN + BBN + t_U

$$w_0 = -0.74^{+0.09}_{-0.10}$$
 BAO + SN + BBN + θ_{\star} + $w_a = -0.78^{+0.75}_{-0.54}$ t_{U} .

Evidence for time-evolving w

• The best fit indicates phantom crossing at z ~ 0.5, a trend that is in agreement with DESI.

DES BAO and SNe also give evidence for evolving DE

BAO+SN+CMB disfavors Λ CDM model by 3.2σ

Tension in ν CDM

- Rather than fixing $\sum m_{\nu} = 0.06 \, \mathrm{eV}, \, \mathrm{allow}$ it to be a free parameter
- Tension btw different datasets persists
- The lower bound on neutrino mass hits zero boundary

Hubble parameter across models

Matter density parameter across models

Chinese Space Station Survey Telescope (CSST)

Stage IV cosmological survey

Satellite survey equipped with a 2m telescope

 Orbiting in tandem with the Chinese Space Station

To be launched in 2027, operate for 10 years

Multi-band Imaging and Slitless Spectroscopy Survey Camera (SC) Multi-Channel Imager (MCI), Integral Field Spectrograph (IFS), Cool Planet Imaging Coronagraph (CPI-C), and THz Spectrometer (TS)

CSST cosmological survey

- Wide field 17500 sq. deg, g band reach 26 mag
- Billion galaxies, hundreds of million of spectra
- 400 sq. deg of deep field
- 7 years of survey observation over a 10 year period
 - 7 photometric bands, NUV, u, g, r, i, z, y
 - 3 slitless bands, GU, GV, GI, resolution > 200

Figure 3 The transmission curves of the seven photometric imaging bands, i.e. NUV, u, g, r, i, z, and y (solid curves), and three slitless spectroscopic bands, i.e. GU, GV, and GI (dashed curves) for the CSST-SC [13].

Comparison with surveys

Project	Project Site/		FoV	R _{EE80}	Num pixels	Area	Wavelength	Num Filters	Spect
	orbit	/op	deg ²	"	10 ⁹	deg ²	nm	riiters	
CSST	LEO	2027	1.1	0.15 0.074/pix	2.5	17500	255 —1000	7	yes
Euclid	L2	2023	0.56 0.55	>0.2 pix lmt	0.6 0.07	15000	550—920 1000—2000	1 3	no yes
Roman	L2	~2026	0.28	>0.2	0.3	~2000	927—2000	4	yes
Rubin	Chile	2025	9.6	~0.54	3.2	18000	320—1050	6	no

R_{EE80}: radius encircling 80% energy

	CSST	HST/ACS WFC	Euclid VIS	WFIRST J		
R _{EE50}	0.1"	0.06"	0.13"	0.12"		
R _{EE80}	0.15"	0.12"	~0.23"	~0.24"	LICT	
	HST					

2 m

1.2 m

2.4 m

8.4 m

Slide from Hu Zhan

CSST Science

Slide from Hu Zhan

中国空间站巡天空间望远镜2025年度科学年会暨早期科学研讨会

Illustrating str. and evo. of Milky way & nearby galaxies; Studying stellar physics

Conclusions

- Y6 BAO gives the tightest BAO constraint from photometric survey, $\sim 2\sigma$ deviation from Planck
- Signature of GI BAO is detected in DES samples
- Y5 SNe quintuples the number of SNe at z>0.5, give ~1500 new high redshift SNes
- Y6 BAO + Y5 SNe are consistent with each other in w_0w_a CDM model, giving further evidence to evolving DE. Do justice to its name!