

Particle Colliders in the Sky

Oliver H. E. Philcox

Junior Fellow @ Simons Foundation

Postdoc @ Columbia

Assistant Prof @ Stanford [from September]

Primordial non-Gaussianity

Vanilla inflation leads to Gaussian fluctuations in the primordial curvature perturbations, ζ

New physics in the early Universe gives non-Gaussian curvature fluctuations

START: Quantum Fluctuations in ϕ Gaussian Non-Gaussian

By searching for non-Gaussianity, we can constrain inflationary physics!

END: Classical Fluctuations in ζ

Vanilla Inflation

• In the simplest inflationary model, we have a single field ϕ (the "inflaton") with a quadratic Lagrangian:

• This leads to a **two-point** function at the end of inflation

$$P_{\zeta}(k) = \langle \zeta(\mathbf{k})\zeta(-\mathbf{k})\rangle \sim A_{s}k^{n_{s}-4}$$

• Higher-order correlators are slow-roll suppressed

Non-Standard Inflation

Many models of inflation feature self-interactions:

- This leads to three- and four-point functions at the end of inflation
- The shape encodes the vertex, the amplitude encodes the microphysics

e.g.
$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle \sim f_{\mathrm{NL}}^{\mathrm{eq}} \times \mathrm{shape}$$

Non-Standard Inflation

• Other models feature **new particles**, σ :

$$\mathcal{L}\supset\delta\dot{\phi}\sigma,\quad \delta\dot{\phi}^2\sigma,\quad \cdots$$

$$\delta\phi\quad \delta\phi\quad \delta\phi\quad \delta\phi\quad \delta\phi\quad \delta\phi\quad \delta\phi$$

$$\sigma$$

$$Linear-Quadratic\quad \sim f_{\rm NL}^{\rm loc}\qquad \quad Quadratic^2\quad \sim \tau_{\rm NL}$$

- This leads to three- and four-point functions at the end of inflation
- The shape encodes the vertex, the amplitude encodes the microphysics

e.g.
$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\rangle \sim f_{\rm NL}^{\rm loc} \times {\rm shape}$$

The Cosmological Collider

- The four-point function tracks the **exchange** of a particle $\sigma_{\mu_1\cdots\mu_s}$ of mass $m_\sigma\sim H$ and spin $s=0,1,2,\cdots$
- This depends on the power spectrum of σ , including all its helicity states, $\sigma^{(\lambda)}$

$$\langle \zeta(\mathbf{k}_1)\zeta(\mathbf{k}_2)\zeta(\mathbf{k}_3)\zeta(\mathbf{k}_4)\rangle \sim \sum_{\lambda} P_{\zeta}(k_1)P_{\zeta}(k_3)P_{\sigma^{(\lambda)}}(K) \times \text{coupling}$$

- In the collapsed limit (low exchange momentum), the inflationary signatures are set by symmetry
- They depend only on mass and spin (and the speed) not on the microphysical model!

By studying the trispectrum we can probe new particles present during inflation!

How to Measure Primordial Non-Gaussianity

• The curvature perturbation ζ sets the initial conditions for the late Universe!

Cosmic Microwave Background
Correlator

$$\langle \delta T^n \rangle \neq 0$$
?

(tracing photon energies)

Galaxy Distribution
Correlator

$$\langle \delta \rho_{\text{galaxy}}^n \rangle \neq 0$$
?

(tracing dark matter)

Observational Constraints

- Previous CMB experiments have placed strong constraints on threepoint functions across many scenarios (self-interactions, light fields, colliders, ...)
- So far, there have been no detections: $10^{-5} \, |f_{
 m NL}| \ll 1$
- Very few works have considered the four-point functions
- Are they worth investigating?

Yes!

Cubic-terms in the Lagrangian could be protected by symmetry

$$\mathcal{L} \sim \frac{1}{2} (\partial \sigma)^2 + \dot{\sigma}^3 + \dot{\sigma}(\partial \sigma)^2 + \delta \sigma^4 + \cdots$$

(for a general light scalar σ , ignoring coupling amplitudes)

Killed by \mathbb{Z}_2 symmetry ($\sigma \to -\sigma$), or some supersymmetries

Four-point functions can reveal hidden particle physics

How to Measure a Four-Point Function

 CMB experiments measure the temperature and polarization across the whole sky

$$T(\theta,\phi), \quad E(\theta,\phi) \quad \leftrightarrow \quad a_{\ell m}^T, \quad a_{\ell m}^E$$

 Since the physics is linear we just need to correlate the CMB at four angles

$$\langle T(\theta_1, \phi_1) T(\theta_2, \phi_2) T(\theta_3, \phi_3) T(\theta_4, \phi_4) \rangle \leftrightarrow \langle a_{\ell_1 m_1}^T a_{\ell_2 m_2}^T a_{\ell_3 m_3}^T a_{\ell_4 m_4}^T \rangle$$

- BUT:
 - The trispectrum is 8-dimensional!?
 - There's 10^{28} combinations of points?!

Optimal Trispectrum Analyses

• To compress the data, we'll use techniques from signal processing

$$\widehat{A} \sim \sum_{\ell_1 m_1 \ell_2 m_2 \ell_3 m_3 \ell_4 m_4} \langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4} \rangle_{\text{theory}}^{\dagger} \times (a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} a_{\ell_4 m_4})$$

Model

Data

- We compress all 10^{28} elements into a **single** number!
- This encodes the **amplitude** of a specific model, e.g., $au_{\rm NL}$, which traces the **microphysics** of inflation
- To **compute** the ℓ , m sum we use a variety of tricks, including low-dimensional integrals, harmonic transforms, and Monte Carlo summation
- If the trispectrum can be (integral-)factorized, this reduces the complexity from $\mathcal{O}(\ell_{\max}^8)$ to $\mathcal{O}(\ell_{\max}^2\log\ell_{\max})$

Optimal Trispectrum Analyses

The result: fast estimation of four-point amplitudes!

The estimators are

- *Unbiased* (by the mask, geometry, beams, lensing, ...)
- Efficient (limited by spherical harmonic transforms)
- Minimum-Variance (they saturate the Cramer-Rao bound)
- Open-Source (entirely written in Python/Cython)
- General (17 classes of model included so far)

inflation parameters

The Planck Trispectrum

Planck PR4/NPIPE data

100 FFP10 simulations

Results: Local Non-Gaussianity

Model: non-linear effects + light particles $(m_{\sigma} \rightarrow 0)$

- Constrains inflationary effects such as:
 - Curvatons (perturbations sourced by a second light field)
 - Bouncing / ekpyrotic universes
 - New particles uncorrelated with the inflaton

Outcome: Consistent with zero!

• (30-40%) improvements from polarization

T+Pol > T-only

Results: Equilateral Non-Gaussianity

Model: self-interactions in inflation

- Constrains models such as:
 - Effective Field Theory couplings
 - DBI inflation (string theory + small sound-speed)
 - Generic single-field inflation (including Lorentz Invariant models)
 - Ghost inflation, k-inflation, and beyond...

Outcome: Consistent with zero!

• (50 - 150%) better than any previous constraints!

T+Pol >>> T-only

The third shape $-\delta\dot{\phi}^2(\partial\phi)^2$ — is very correlated, so we don't plot it [but we don't detect it]

Results: Cosmological Collider

Model: inflationary massive and spinning particles

$$\langle \zeta^4 \rangle \sim P_{\zeta}(k_{\rm short}) P(k_{\rm short}') P_{\zeta}(k_{\rm long}) \times \left(\frac{k_{\rm long}^2}{k_{\rm short}k_{\rm short}'}\right)^{3/2 \pm i \sqrt{m_{\sigma}^2/H^2 - 9/4}}$$
AngleFunction_{spin}($\hat{\mathbf{k}}_{\rm short}$, $\hat{\mathbf{k}}_{\rm short}'$, $\hat{\mathbf{k}}_{\rm short}'$, $\hat{\mathbf{k}}_{\rm long}$)

• Several regimes, including:

Light Fields (Complementary Series):

 $m_{\sigma} \lesssim 3H/2$

• Conformally Coupled Fields: $m_{\sigma} = 3H/2$

• **Heavy** Fields (Principal Series): $m_{\sigma} \gtrsim 3H/2$

Outcome: Consistent with zero!

First constraints from data!

Results: Cosmological Collider

Model: inflationary massive and spinning particles

- Several regimes, including:
 - **Light** Fields (Complementary Series): $m_{\sigma} \lesssim 3H/2$
 - Conformally Coupled Fields: $m_{\sigma} = 3H/2$
 - **Heavy** Fields (Principal Series): $m_{\sigma} \gtrsim 3H/2$

- As expected, **light fields** are easiest to constrain since their trispectrum *diverges*
- Odd-spins are hard to constrain due to cancellations!

Results: Gravitational Lensing

Gravitational lensing also induces a four-point function:

$$T_{
m CMB}
ightarrow T_{
m CMB} + \nabla T \nabla \phi$$

$$\nabla^2 \phi \sim \int {
m dark \; matter} \ \langle T_{
m CMB}^4 \rangle \sim \langle T \nabla T \rangle^2 \langle \nabla \phi \nabla \phi \rangle$$

- The estimators are (almost) equivalent to the standard forms (Including realization-dependent noise, N^0 bias, N^1 bias, but adding mask-dependent normalization and optimal filtering)
- We detect *Planck* lensing at 43σ !
 - This is consistent with the standard model

$$\langle \phi^2 \rangle / \langle \phi^2 \rangle_{\text{fiducial}} \sim C_L^{\phi\phi} / C_L^{\phi\phi, \text{fid}} = 0.979 \pm 0.023$$

What's Next For the Trispectrum?

There are many ways to extend.

- 1. More Data
- $\sigma(\tau_{\rm NL}) \sim \ell_{\rm max}^{-2}$
- ACT, SPT, Simons Observatory, CMB-S4, LiteBird, CMB-HD will provide data down to much smaller scales!
- Polarization will be particularly useful and could benefit from delensing
- 2. More Models
 - Lighter particles? Heavier particles?
 - Collider physics beyond the collapsed limit?
 - Thermal baths? Higher-spin particles? Modified sound speeds? Fermions?
 - Scale-dependence? Isocurvature? Primordial magnetic fields?

The Future of Non-Gaussianity

- Future CMB experiments (in 2D) will only improve bounds by $\lesssim 10\,\times$
- Future LSS experiments (in 3D) can place much stronger bounds on non-Gaussianity!
- Recent works have constrained several three-point function amplitudes, $f_{\rm NL}$ using Galaxy Surveys:
 - Local: additional light fields
 - Equilateral: cubic interactions in single-field inflation
 - Collider: exchange of massive scalar fields
- For now, the constraints are **much** worse than the CMB $(5-20\times)$ this will change soon!
- There's lot's more to explore, including the **four-point function** and the **full collider scenario**!

Self-Interaction Forecast

Summary

- Thanks to new developments in theory and analysis, we can now *directly* constrain inflationary four-point functions and the **cosmological collider**
- This probes 10¹³TeV-scale physics using low-energy data!
- New data from the CMB and galaxy surveys will significantly enhance our knowledge of inflation!

arXiv 2502.06931 2502.05258 2502.04434 2407.08731 2404.01894 2204.01781 2201.07238 Contact: ohep2@cantab.ac.uk

The Cosmological Collider has been switched on!

