Fundamental Interactions: Inter-frontier Connections

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

- mjrm@sjtu.edu.cn
- <u>mjrm@umass.edu</u>
- 微信 : mjrm-china
- https://michaelramseymusolf.com/

About MJRM:

Science

Family

My pronouns: he/him/his # MeToo

Friends

PASCOS 2024 Quy Nhon July 13, 2024

T. D. Lee Institute / Shanghai Jiao Tong U.

T. D. Lee Institute / Shanghai Jiao Tong U.

Goals for this Talk

- What I won't do: Give a theoretical summary overview
- What I will do: Share my perspective on two themes

Fundamental Physics: Past & Future

Two Themes

 Progress will come from focusing on wellposed scientific questions
 potential for insights and/or discoveries

EMC '88

Large negative strange sea polarization & small $\Delta \Sigma$

Large negative strange sea polarization & small $\Delta \Sigma$

What is the s-quark component of the nucleon magnetic moment and charge distribution ?

- Kaplan & Manohar '88
- Jaffe '89
- McKeown & Beck '89
- Holstein & MJRM '90

What is the s-quark component of the nucleon magnetic moment and charge distribution ?

- Kaplan & Manohar '88
- Jaffe '89
- McKeown & Beck '89
- Holstein & MJRM '90

10

P. Souder & K. Paschke, Front Phys 11 (2016) 111301

Two Themes

 Progress will come from focusing on wellposed scientific questions
 potential for insights and/or discoveries

 It's important to think beyond boundaries of funding agency priorities and conventional sub-field categories → rich opportunities from inter-frontier connections

Nuclear Science Long Range Plan Pre-Town Meeting: Los Alamos 2006

Hamish Robertson

"Solar"

 V_{PMNS} =

$$\begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix}$$
$$\times \operatorname{diag}(1, \ e^{i\frac{\alpha_{21}}{2}}, \ e^{i\frac{\alpha_{31}}{2}}) \ .$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

"Atmospheric"

"Reactor"

Nuclear Science Long Range Plan Pre-Town Meeting: Los Alamos 2006

Hamish Robertson

 V_{PMNS} =

Nuclear Science Long Range Plan Pre-Town Meeting: Los Alamos 2006

Hamish Robertson

The BSM Dog Race

This talk: I'll focus on a problem I'm particularly immersed in to illustrate \rightarrow other areas of inquiry equally important & interest

Outline

- I. Questions & Frontiers
- II. Origin of matter: EW scale
- III. Outlook
- IV. Origin of matter & neutrino physics
- V. Electroweak precision tests

Another day

I. Questions & Frontiers

Fundamental Questions

MUST answer

SHOULD answer

Fundamental Questions

MUST answer

SHOULD answer

Origin of m_{ν}

Fundamental Questions

MUST answer

SHOULD answer

Origin of m_{ν}

HEP : New (heavy) particles

- Precision tests: muon g-2, PV ee...
- Fundamental symmetry tests (CP, Lepton number...)
- Neutrino properties
- Flavor physics

V. Cirigliano, INT EIC '24

Nuclear Physics Connections

Lifetime Frontier

- Fundamental symmetry tests (CP, Lepton number...)
- Neutrino properties
- Flavor physics

Frontiers

HEP : New (heavy) particles

Lifetime Frontier

- Fundamental symmetry tests (CP, Lepton number...)
- Neutrino properties
- Flavor physics

Frontiers

HEP : New (heavy) particles

V(φ)

- Atomic, Molecular, Optical
- Condensed Matter

Lifetime Frontier

- Fundamental symmetry tests (CP, Lepton number...)
- Neutrino properties
- Flavor physics

Frontiers

HEP + Nuc

- Atomic, Molecular, Optical
- Condensed Matter

More Matter than Antimatter ?

When & how was the baryon asymmetry generated ?

Paradigmatic inter-frontier challenge

Ingredients for Baryogenesis

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or
 CPT violation

Scenarios: leptogenesis, EW baryogenesis, Afflek-Dine, asymmetric DM, cold baryogenesis, postsphaleron baryogenesis...

Standard ModelBSMImage: Standard ModelImage: Standard Model</t

Cosmic Baryon Asymmetry

$$Y_B = \frac{n_B}{s} = (8.66 \pm 0.04) \times 10^{-11}$$

One number → \\\\ \\\ \\\ \\\ \\\ \\\ \\\ Explanations

Experiment can help:

- Discover ingredients
- Falsify candidates

Fermion Masses & Baryon Asymmetry

Fermion Masses & Baryon Asymmetry

This talk

Fermion Masses & Baryon Asymmetry

Another day

This talk

Lifetime Frontier

Fundamental symmetry tests (CP, Lepton number...)

- Neutrino properties
- Flavor physics

Frontiers

HEP : New (heavy) particles

- Atomic, Molecular, Optical
- Condensed Matter
II. Origin of Matter: EW Scale

Was the baryon asymmetry generated in conjunction with spontaneous EW symmetry breaking ?

EWBG Ingredients

- EW Sphalerons
- Strong 1st Order EW
 Phase Transition
- Left-handed number density

EWBG Ingredients

- EW Sphalerons
- Strong 1st Order EW
 Phase Transition
- Left-handed number density

- Interesting in its own right
- Key ingredient for EW baryogenesis
- Source of gravitational radiation

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

 How reliably can we compute the thermodynamics ?

n evolve differently as T evolves → ilities for symmetry breaking

Was There an EW Phase Transition?

Bubble Collisions

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Was There an EW Phase Transition?

Bubble Collisions

$T_{EW} \rightarrow$ Scale for Colliders & GW probes

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) \, h^2 + \lambda \, h^4 \ \ {\rm \textbf{+}} \ .. \label{eq:V}$$

First Order EWPT from BSM Physics

Generate finite-T barrier

Introduce new scalar *\phi* interaction with h via the Higgs Portal

 $M_{\phi} \lesssim 700 \text{ GeV}$ h- $\phi \text{ mixing:} | \sin \theta | \gtrsim 0.01$

First Order EWPT from BSM Physics

Generate finite-T barrier

Introduce new scalar ϕ interaction Collider target with h via the Higgs Portal

- $M_{\phi} \lesssim 700 \ \mathrm{GeV}$
- $\dot{h-\phi}$ mixing: $|\sin\theta| \ge 0.01$

BSM EWPT: Inter-frontier Connections

Gravitational Waves

Gravitational Waves

Particle physics (phase transitions, domain walls...) → possible GW sources at range of frequencies

Gravitational Waves

EWPT laboratory for GW micro-physics: colliders can probe particle physics responsible for non-astro GW sources → test our framework for GW microphysics at other scales

EWPT: Theory-Pheno Interface

Theoretical developments → phenomenological implications

Models & Phenomenology

What BSM Scenarios?

SM + Scalar Singlet	Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel- Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Shu 15, Kozaczuk 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chen, Kozaczuk, Lewis 17, Gould, Kozaczuk, Niemi, Ramsey-Musolf, Tenkanen, Weir 19
SM + Scalar Doublet (2HDM)	Turok, Zadrozny 92, Davies, Froggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Froome, Huber, Seniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Huber, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Andersen, Gorda, Helset, Niemi, Tenkanen, Tranberg, Vuorinen, Weir 18
SM + Scalar Triplet	Patel, Ramsey-Musolf 12, Niemi, Patel, Ramsey-Musolf, Tenkanen, Weir 18
MSSM	Carena, Quiros, Wagner 96, Delepine, Gerard, Gonzalez Felipe, Weyers 96, Cline, Kainulainen 96, Laine, Rummukainen 98, Carena, Nardini, Quiros, Wagner 09, Cohen, Morrissey, Pierce 12, Curtin, Jaiswal, Meade 12, Carena, Nardini, Quiros, Wagner 13, Katz, Perelstein, Ramsey-Musolf, Winslow 14
NMSSM	Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15

Thanks: J. M. No

Extensive references in MJRM: 1912.07189

Models & Phenomenology

What BSM Scenarios?

SM + Scalar Singlet

Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel-Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Su 15, Nor Cok 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chun Konaruu, Levis 11, Culd, Kozaczuk, Niemi, Ramsey-Musolf, Tenkanen, Weir 19.

SM + Scalar Doublet (2HIQI) Ph S & Ph S Calar Triplet Turok, Zadaany 92, Daves Fraggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Frankel Huber, Sciniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Futur, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Andersen, Gorda, Helset, Niemi, Tenkanen, Tranberg, Vuorinen, Weir 18...

Patel, Ramsey-Musolf 12, Niemi, Patel, Ramsey-Musolf, Tenkanen, Weir 18 ...

Carena, Quiros, Wagner 96, Delepine, Gerard, Gonzalez Felipe, Weyers 96, Cline, Kainulainen 96, Laine, Rummukainen 98, Carena, Nardini, Quiros, Wagner 09, Cohen, Morrissey, Pierce 12, Curtin, Jaiswal, Meade 12, Carena, Nardini, Quiros, Wagner 13, Katz, Perelstein, Ramsey-Musolf, Winslow 14...

NMSSM...

MSSM

Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15...

Thanks: J. M. No

Extensive references in MJRM: 1912.07189

Theory-Pheno Interface

Simple Higgs portal models:

• Real gauge singlet (SM + 1)

62

• Real EW triplet (SM + 3)

Theory-Pheno Interface

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$

Phenomenology

$$h_1 = \sin \theta \ s + \cos \theta \ h$$
$$h_2 = \cos \theta \ s - \sin \theta \ h$$

 $m_{1,2}$; θ ; $h_i h_j h_k$ couplings

Collider Probes

- Resonant di-Higgs (h₁ h₁) production *
- Heavy h₂ production *
- Associated production (Z h₁) and nonresonant di-Higgs production *
- Exotic Higgs decays **

* Heavy h₂

** Light h₂

Collider Probes

- Resonant di-Higgs (h₁ h₁) production *
- Heavy h₂ production *
- Associated production (Z h₁) and nonresonant di-Higgs production *
- Exotic Higgs decays **

* Heavy h₂

** Light h₂

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Lauri Niemi, MJRM, Gutao Xia, 2405.01191

Singlets: Lattice vs. Pert Theory

Lattice: Crossover

Lauri Niemi, MJRM, Gutao Xia, 2405.01191

Singlets: Lattice vs. Pert Theory

Lauri Niemi, MJRM, Gutao Xia, 2405.01191

Singlets: Lattice vs. Pert Theory

- Lattice: crossover-FOEWPT boundary
- FOEWPT region: PT-lattice agreement
- Pheno: precision Higgs studies may be sensitive to a greater portion of FOEWPT-viable param space than earlier realized

 $\sin\theta$

Collider Probes

- Resonant di-Higgs (h₁ h₁) production *
- Heavy h₂ production *
- Associated production (Z h₁) and nonresonant di-Higgs production *

• Exotic Higgs decays **

* Heavy h₂

** Light h₂

Light Singlets: Exotic Higgs Decays

One loop perturbation theory

EWPT viable: $|\sin \theta| = 0.01$ 10^{0} numerical 10^{-1} $\Delta = 0.7$ 10^{-2} a2 EWPT viable: Semi analytic 10^{-3} $g_{122} = \frac{1}{2}va_2 + \mathcal{O}(\theta^2)$ \rightarrow nucleation decisive 10^{-4} 10 20 30 50 40 60 m_2 [GeV] $h_1 \rightarrow h_2 h_2$

J. Kozaczuk, MR-M, J. Shelton 1911.10210 See also: Carena et al 1911.10206, Carena et al 2203.08206, Wang et al 2203.10184

Light Singlets: Exotic Higgs Decays

EWPT viable:

One loop perturbation theory $|\sin \theta| = 0.01$ 10^{0}

Light Singlets: Exotic Higgs Decays

Theory-Pheno Interface

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$

Theory-Pheno Interface

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$\frac{\mathsf{Small}}{\mathsf{V} \subset a_1 \, \mathsf{H}^2 \phi + a_2 \, \mathsf{H}^2 \phi^2}$$

Theory-Pheno Interface

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Phenomenology

- Gravitational waves
- Collider: h → γγ, dis charged track, NLO e⁺e⁻ → Zh...

Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332

• 1 or 2 step

• Non-perturbative

Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332

• 1 or 2 step

• Non-perturbative

Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332

1 or 2 step

Non-perturbative

BSM EWPT: Inter-frontier Connections

GW & EWPT Phase Diagram

- Single step transition: GW well outside LISA sensitivity
- Second step of 2-step transition can be observable
- Significant GW sensitivity to portal coupling

Friedrich, MJRM, Tenkanen, Tran 2203.05889

LISA

GW & EWPT Phase Diagram

Friedrich, MJRM, Tenkanen, Tran 2203.05889

EWBG Ingredients

- EW Sphalerons
- Strong 1st Order EW
 Phase Transition

Left-handed number
 density

BSM CPV

BSM CPV: Inter-frontier Connections

CPV for EWBG

1st order EWPT

EWSB

Y_B : CPV & EW sphalerons

1st order EWPT \rightarrow "strong" to preserve Y_B

Y_B : diffuses into interiors

EWSB

CPV for EWBG

1st order EWPT

1st order EWPT \rightarrow "strong" to preserve Y_B

Y_B : diffuses into interiors

EWSB

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻³⁰
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Not shown: muon

System	Limit (e cm)*	SM CKM CPV	BSM CPV	
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰	
HfF*	4.1 x 10 ⁻³⁰ **	10 - ³⁸	10 -30	
n	1.8 x 10 ⁻²⁶	10 -31	10 -26	
* 95% CL	** e ⁻ equivalent	englenge	e for nuc &	ANIO
		Chaileut	× 1	neutron

Not shown: muon

Semiconole-allocary

& nuclei
 ★ atoms
 ~ 100 x better sensitivity

proton

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 -30
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 -26

* 95% CL ** e⁻ equivalent

Polar molecules: paramagnetic

Diamagnetic atom

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 -30
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

System	Limit (e cm)*	SM CKM CPV	BSM CPV		
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰		
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 -30		
n	1.8 x 10 ⁻²⁶	10 -31	10 -26		
* 95% CL ** e ⁻ equivalent THEORY <i>E</i> _{internal} "Schiff moment" + CPV eq"					
Selar molecu paramagnetic	∩//es: ; (c)	$ \begin{array}{c c} e & \text{nuc} \\ e & \text{nuc} \\ e & \text{nuc} \\ \end{array} $	_{CD} , d _q + CPV Nuc , ggg, qq	leon	
$d_e + CPV eq$	Diam	agnetic atom		94	

	System	Limit (e cm)*	SM CKM CPV	BSM CPV
	¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
	HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 -30
ĺ	n	1.8 x 10 ⁻²⁶	10 ⁻³¹	10 ⁻²⁶

* 95% CL ** e⁻ equivalent

Diamagnetic atom

Diamagnetic atom

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 ⁻³⁸	10 ⁻³⁰
n	1.8 x 10 ⁻²⁶	10 -31	10 -26
* 95% CL ** e ⁻ equivalent			
	-	Cnalleu	📩 📩 nei

 \star neutron

> proton & nuclei

 \star atoms

~ 100 x better sensitivity

Not shown: muon

Semiconole-allocary

System	Limit (e cm)*	SM CKM CPV	BSM CPV
¹⁹⁹ Hg	7.4 x 10 ⁻³⁰	10 ⁻³⁵	10 ⁻³⁰
HfF*	4.1 x 10 ⁻³⁰ **	10 - ³⁸	10 -30
n	1.8 x 10 ⁻²⁶	10 - ³¹	10 ⁻²⁶
* 95% CL	** e ⁻ equivalent	Challenge for EWBG	

Mass Scale Sensitivity

$$\psi$$
 φ φ φ φ

$$\sin\phi_{CP} \sim 1 \rightarrow M > 5000 \text{ GeV}$$

 $M < 500 \text{ GeV} \rightarrow sin\phi_{CP} < 10^{-2}$

CPV for EWBG

- Can the CPV interactions be sufficiently "large" ?
- Reliable quantum transport computations ?

CPV for EWBG

• Reliable quantum transport computations ?

Illustrations

2HDM CPV : EDMs 2014

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

2014 New Hffst $d_n \times 0.1$ $d_n \times 0.1$ $d_n \times 0.1$ $d_A(Hg) \times 0.1$ $d_{A}(Hg) \times 0.1$ $d_{ThO} \times 0.1$ $d_{ThO} \times 0.1$ $d_{ThO} \times 0.1$ $d_A(Ra) [10^{-27} e cm]$ Inoue, R-M, Zhang: 1403.4257

_103

2HDM CPV : EDMs & LHC 2024

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

sin α_b : CPV scalar mixing

d_A(Ra) [10⁻²⁷ e cm]

104

Inoue, R-M, Zhang: 1403.4257

 $d_A(Ra)$

2HDM CPV : EDMs & LHC 2024

CPV & 2HDM: Type II illustration

 $\lambda_{6,7} = 0$ for simplicity

2HDM CPV : Had & Nuc Structure

CPV & 2HDM: Type II illustration

$\lambda_{6,7} = 0$ for simplicity

2HDM CPV & EWBG

2HDM CPV: Source for EWBG?

Dorsch et al, 1611.05874

 $\alpha_b \propto \delta_1 - \delta_2$

2HDM CPV & EWBG

2HDM CPV: Source for EWBG?

Dorsch et al, 1611.05874

 $\alpha_b \propto \delta_1 - \delta_2$
CPV for EWBG: Transport Theory & EDMs

Inoue, Ovanesyan, R-M: 1508.05404

109

CPV for EWBG: Transport Theory & EDMs

Inoue, Ovanesyan, R-M: 1508.05404

Y_B : CPV, diffusion & EW sphalerons

110

Flavored EW Baryogenesis

Liu, RM, Shu '12

 $\mathcal{L} = \lambda_{ij}^{u} \bar{Q}^{i} (\epsilon H_{d}^{\dagger}) u_{R}^{j} - \lambda_{ij}^{d} \bar{Q}^{i} H_{d} d_{R}^{j} - y_{ij}^{u} \bar{Q}^{i} H_{u} u_{R}^{j}$ $+ y_{ij}^{d} \bar{Q}^{i} (\epsilon H_{u}^{\dagger}) d_{R}^{j} + \text{H.c.}$

Fuyuto, Hou, Senaha '17

Flavored EW Baryogenesis

Liu, RM, Shu '12

Fuyuto, Hou, Senaha '17

Flavored EW Baryogenesis

Flavor basis (high T) $\mathcal{L}_{Yukawa}^{Lepton} = -\overline{E_L^i} \left[(Y_1^E)_{ij} \Phi_1 + (Y_2^E)_{ij} \Phi_2 \right] e_R^j + h.c.$ Mass basis (T=0) $CPV h \rightarrow \tau\tau$ $\frac{m_f}{v} \kappa_\tau (\cos \phi_\tau \overline{\tau} \tau + \sin \phi_\tau \overline{\tau} i \gamma_5 \tau) h$ Guo, Li, Liu, R-M, Shu 1609.09849

Ge, Li, Pasquini, R-M, Shu 2021.13922

113

Two Themes

 Progress will come from focusing on wellposed scientific questions
 potential for insights and/or discoveries

Was the matter-antimatter asymmetry generated in conjunction with electroweak symmetry-breaking ?

 It's important to think beyond boundaries of funding agency priorities and conventional sub-field categories
 ¬ rich opportunities from inter-frontier connections

• Precision tests: muon g-2, PV ee... Lifetime Frontier

Fundamental symmetry tests (CP, Lepton number...)

- Neutrino properties
- Flavor physics

Frontiers

HEP : New (heavy) particles

Historical artifact: US HEP vision → still useful mnemonic

- Atomic, Molecular, Optical
- Condensed Matter
 115

III. Outlook

Fundamental Physics: Past & Future

