Precision measurements at the NA62 experiment

Zuzana Kucerova

On behalf of the NA62 Collaboration

12/07/2024 PASCOS 2024, Quy Nhon, Vietnam

Overview

Precision measurements with kaon and pion decays with NA62 Run 1 data (2016-2018):

- ${\cal K}^+ o \pi^+ \mu^+ \mu^-$ [JHEP11(2022)011] [JHEP06(2023)040]
- ${\cal K}^+
 ightarrow \pi^+ \gamma \gamma$ [Phys.Lett.B 850 (2024) 138513]
- ${\cal K}^+ o \pi^0 e^+
 u \gamma$ [JHEP09(2023)040]
- $\pi^0
 ightarrow e^+ e^-$ [Preliminary results]

12/07/2024

NA62 Beamline, Detector and Datasets

- Detector designed for $K^+
 ightarrow \pi^+
 u \overline{
 u}$ study
- K⁺ decay-in-flight technique: unseparated hadron beam (70% π⁺, 23% p, 6% K⁺), nominal intensity 750 MHz, K⁺ momentum 75 GeV/c, 75 m long vacuum decay region
- Tracking: beam particles (GTK), decay products (STRAW)
- Trigger and timing: hodoscopes (CHOD)
- PID: K^+ (KTAG), π^+ (RICH), μ^+ (MUV3), calorimeters (LKr, MUV1, MUV2)
- Veto systems: beam interactions (CHANTI), γ (LAV, LKr, IRC, SAC)
- Data taking: 2016–2018 (Physics Run I, $\sim 6 \times 10^{12}$ useful K^+ decays), 2021–LS3 (Physics Run II, ongoing)

[JINST 12(2017) P05025]

$$K^+ \rightarrow \pi^+ \mu^+ \mu^-$$

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$

- $K^{\pm}
 ightarrow \pi^{\pm} I^{+} I^{-}$ decays $(I = e, \mu)$
 - Flavour changing neutral current processes
 - Ideal for test of lepton flavour universality
 - Dominant contribution via virtual photon exchange: $K^{\pm} \to \pi^{\pm} \gamma^* \to \pi^{\pm} l^+ l^-$
 - $\bullet\,$ Kinematic variable $z=m_{l^+l^-}^2/m_K^2$
 - Form factor of $K^{\pm} \rightarrow \pi^{\pm} \gamma^*$ transition W(z) parametrized in ChPT at $\mathcal{O}(p^6)$ as

$$W(z) = (a_+ + zb_+)G_F m_K^2 + W^{\pi\pi}(z)$$

with real parameters $\mathbf{a}_+, \mathbf{b}_+$ and (known) complex function $W^{\pi\pi}(z)$

Goals:

- Measure model independent ${\cal B}({\cal K}^+ o \pi^+ \mu^+ \mu^-)$
- Measure $|W(z)|^2$
- $\bullet\,$ Determine form factor parameters a_+,b_+

[JHEP11(2022)011]

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$

Selection:

- 2μ multi-track trigger line used for signal selection
- Normalization: $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ from multi-track triggered data $\rightarrow N_{\kappa}$ decays
- Generic 3-track selection cuts
- Tracks identified as $\pi^+\mu^+\mu^-$
- Kinematic cuts suppressing $K_{3\pi}$ events
- Minimal differences in signal and normalization event selections \Rightarrow reduced systematic effects

Analysis strategy:

- Data distributed in 50 equipopulated z bins
- Differential decay width is given by

$$\left(\frac{d\Gamma(z)}{dz}\right)_{i} = \frac{N_{\pi\mu\mu,i}}{A_{\pi\mu\mu,i}} \frac{1}{\Delta z_{i}} \frac{1}{N_{K}} \frac{\hbar}{\tau_{K}}$$

- Model independent \mathcal{B} obtained by summing $\frac{d\Gamma}{d\tau}$ in all 50 bins
- $|\mathbf{W}(\mathbf{z})|^2$ function values extracted from $\frac{d\Gamma}{dr}$
- ChPT form factor parameters \mathbf{a}_+ , \mathbf{b}_+ extracted from the fit of $|W(z)|^2$ data points

6/31

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$

 ${\cal B}({\it K}^+ o \pi^+ \mu^+ \mu^-) = (9.15 \pm 0.08) imes 10^{-8}$ at $68\% {\it CL}$

$$K^+ \to \pi^+ \gamma \gamma$$

$K^+ \to \pi^+ \gamma \gamma$

- Long-distance dominated radiative decay
- Crucial test of Chiral Perturbation Theory
- Kinematic variables

$$z = \frac{(P_{K} - P_{\pi})^{2}}{m_{K}^{2}} \equiv \left(\frac{m_{\gamma\gamma}}{m_{K}}\right)^{2}$$
$$y = \frac{P_{K}(Q_{\gamma_{1}} - Q_{\gamma_{2}})}{m_{K}^{2}}$$

- z computed using ${\cal K}^+$ and π^+ reconstructed 4-momenta
- Branching fraction $\mathcal{B}(\mathbf{K}^+ \to \pi^+ \gamma \gamma)$ parametrized in ChPT by an unknown real parameter \hat{c}

•
$$B(z)$$
 appears at ChPT $\mathcal{O}(p^6)$

Goals:

- $\bullet~$ Determine \widehat{c}
- Measure model independent ${\cal B}({\cal K}^+ o \pi^+ \gamma \gamma)$

$$\frac{d^{2}\Gamma}{dydz} = \frac{m_{K}}{2^{9}\pi^{3}} \left[z^{2} \left(|A(\hat{c}, y, z) + B(z)|^{2} + |C(z)|^{2} \right) + \left(y^{2} - \frac{1}{4}\lambda(1, r_{\pi}^{2}, z) \right)^{2} |B(z)|^{2} \right]$$

$K^+ \to \pi^+ \gamma \gamma$

Selection:

- Min-bias and non-muon trigger lines
- Normalization: $K^+ \rightarrow \pi^+ \pi^0$
- Single positive track
- $K^+ \pi^+$ matching, reconstruct vertex
- $\bullet~{\rm Two}~\gamma~{\rm clusters}$
- π^+ identification & μ^+ rejection
- Signal region: 0.2 < z < 0.51

Analysis strategy:

- Main background:
 - cluster merging in calorimeter $(K^+ \to \pi^+ \pi^0 \gamma, \pi^0 \to \gamma \gamma \text{ or }$
 - $(K^+ \to \pi^+ \pi^0 \gamma, \pi^0 \to \gamma \gamma)$ or $K^+ \to \pi^+ \pi^0 \pi^0, \pi^0 \to \gamma \gamma)$
 - multi-track events, tracks out of acceptance
- Data distributed in 31 equal bins
- $\widehat{\mathbf{c}}$ obtained by χ^2 fit of z-spectrum
- \bullet Model independent ${\boldsymbol{\mathcal{B}}}$ obtained by summing z-spectrum in all bins in signal range

$K^+ ightarrow \pi^+ \gamma \gamma$

$$N_{bcg}^{exp} = 291 \pm 14$$
$$N^{obs} = 3984$$

 $\widehat{c}{=}1.44\pm0.069_{stat}\pm0.034_{syst}$

 ${\cal B}_{ChPT{\cal O}(
ho^6)}({\cal K}^+ o \pi^+ \gamma \gamma) = (9.61 \pm 0.15_{
m stat} \pm 0.07_{
m syst}) imes 10^{-7} \ {\cal B}_{MI}({\cal K}^+ o \pi^+ \gamma \gamma | z > 0.2) = (9.46 \pm 0.19_{
m stat} \pm 0.07_{
m syst}) imes 10^{-7}$

$$K^+ \to \pi^0 e^+ \nu \gamma$$

$K^+ \to \pi^0 e^+ \nu \gamma$

- Decay described in ChPT as direct emission, inner bremsstrahlung and their interference
- ${\cal B}({\it K}^+ o \pi^0 e^+
 u \gamma)$ strongly depends on
 - E_{γ} cut-off
 - $heta_{e,\gamma}$ cut-off in K^+ rest frame
- Three kinematic ranges considered (defined by E_{γ} and $\theta_{e,\gamma} \rightarrow$ table below)
- Normalized branching fraction defined as:

$$\mathcal{R}_{j} = rac{\mathcal{B}(\mathcal{K}^{+}
ightarrow \pi^{0} e^{+}
u \gamma | \mathcal{E}_{\gamma}^{j}, heta_{e, \gamma}^{j})}{\mathcal{B}(\mathcal{K}^{+}
ightarrow \pi^{0} e^{+}
u)}$$

• Test of T-conservation thanks to T-odd observable ξ

$$\xi = \frac{\vec{p}_{\gamma}(\vec{p}_{e} \times \vec{p}_{\pi})}{M_{K}^{3}}$$
$$\mathbf{A}_{\xi} = \frac{\mathbf{N}_{\xi > \mathbf{0}} - \mathbf{N}_{\xi < \mathbf{0}}}{\mathbf{N}_{\xi > \mathbf{0}} + \mathbf{N}_{\xi < \mathbf{0}}}$$

Current (theory) expectations and results:

•
$$A_{\xi}^{ISTRA+}(R_3) = (1.5 \pm 2.1) \times 10^{-2}$$

[Eur.Phys.J.C50(2007)] [Phys.Atom.Nuclei 70(2007)] [Eur.Phys.J.C81(2021)]

		S1	S2		S3		
A_{ξ}^{OKA}	$\times 10^{3}$ -0.1	$\pm 3.9_{\mathrm{stat}} \pm 1.7_{\mathrm{syst}}$	$-4.4\pm7.9_{\rm stat}\pm1.9_{\rm syst}$		$7.0\pm8.1_{\rm stat}\pm1.5_{\rm syst}$		$.5_{\rm syst}$
	E_{γ}^{j}	$ heta_{e,\gamma}^j$	$O(p^6) ChPT$	ISTRA+		OKA	
$R_1 \times 10^2$	$E_{\gamma} > 10 MeV$	$\theta_{e,\gamma} > 10^{\circ}$	1.804 ± 0.021	1.81 ± 0.03	3 ± 0.07	1.990 ± 0.017	t ± 0.021
$R_2 \times 10^2$	$E_{\gamma} > 30 MeV$	$\theta_{e,\gamma} > 20^{\circ}$	0.640 ± 0.008	0.63 ± 0.02	2 ± 0.03	0.587 ± 0.010	$) \pm 0.015$
$R_3 \times 10^2$	$E_{\gamma} > 10 MeV$	$0.6 < \cos \theta_{e,\gamma} < 0.9$	0.559 ± 0.006	0.47 ± 0.02	2 ± 0.03	0.532 ± 0.010	0 ± 0.012
ž	Zuzana Kucerova	Precision measureme	Precision measurements with kaon and pion decays at			2/07/2024	13/3

$K^+ ightarrow \pi^0 e^+ \nu \gamma$

Goals:

• Measure normalized $\mathcal{B}(K^+ \to \pi^0 e^+ \nu \gamma)$ in ranges $j = \{1, 2, 3\}$:

$$\mathcal{R}_{j} = \frac{N_{Ke3\gamma,j}^{obs} - N_{Ke3\gamma,j}^{bkg}}{N_{Ke3}^{obs} - N_{Ke3}^{bkg}} \cdot \frac{A_{Ke3}}{A_{Ke3\gamma,j}} \cdot \frac{\varepsilon_{Ke3}^{trig}}{\varepsilon_{Ke3\gamma,j}^{trig}}$$

• Evaluate asymmetry:

$$A_{\xi}^{NA62} = A_{\xi}^{DATA} - A_{\xi}^{MC}$$

Signal selection:

- Min-bias and non-muon trigger lines
- Normalization: $K^+
 ightarrow \pi^0 e^+ \nu$
- Reconstruct K^+ and e^+
- π^0 identification with 2 γ
- $\bullet\,$ Radiative γ identified as isolated cluster
- Minimal differences in signal and normalization selections ⇒ reduced systematic effects

Analysis strategy:

- Background < 1%, mainly accidental
- Signal decay described in MC by ChPT at $\mathcal{O}(p^6)$
- Normalization selection acceptance is defined wrt full phase space
- Evaluation of *R_j*
- Evaluation of asymmetry $\mathbf{A}_{\varepsilon}^{NA62}$

[JHEP09(2023)040

$K^+ ightarrow \pi^0 e^+ \nu \gamma$

 ${\mathcal R}$ measurement:

- Precision improved by a factor > 2
- Results smaller by 5% than ChPT prediction

Asymmetry measurement:

- Compatible with no asymmetry
- Uncertainties larger than theory expectations

[JHEP09(2023)040]

$$\pi^0
ightarrow e^+ e^-$$

$\pi^0 ightarrow e^+ e^-$

• Experimentally accessible:

$$\mathcal{B}(\pi^0
ightarrow e^+e^-(\gamma), x > x_{ ext{cut}}), x = m_{ee}^2/m_{\pi^0}^2$$

- Low \times region dominated by Dalitz decay $\pi^0 \rightarrow e^+ e^- \gamma$
- For $x > x_{cut} = 0.95$, Dalitz contribution only 3.3%
- Previously measured by KTeV: $\mathcal{B}_{KTeV}(\pi^+e^+e^-, x > 0.95) =$ (6.44 ± 0.25 ± 0.22) × 10⁻⁸ [PhysRevD.75.012004]

Goals:

• Measurement of $\mathcal{B}(\pi^0
ightarrow e^+e^-(\gamma), x > 0.95)$

Signal selection:

- Multi-track electron trigger line
- Normalization: $K^+ \rightarrow \pi^+ e^+ e^-$, computed in a background-free region $140 MeV/c^2 < m_{ee} < 360 MeV/c^2$
- Minimal differences in signal and normalization event selections \Rightarrow reduced systematic effects
- 3-track vertex topology
- $\bullet~$ Signal measured in region $130 MeV/c^2 < m_{ee} < 140 MeV/c^2$

Analysis strategy:

- Background:
 - Irreducible $K^+ \rightarrow \pi^+ e^+ e^-$
 - Multiple Dalitz decays with undetected particles (γ, e)
- $\mathcal{B}(\pi^0 \to e^+e^-(\gamma), x > 0.95)$ obtained by performing maximum likelihood fit of simulated samples to data
- Using latest radiative corrections the result can be extrapolated to obtain $\mathcal{B}(\pi^0 \to e^+e^-, \text{no rad})$

$\pi^0 ightarrow e^+ e^-$

Result in agreement with SM expectation.

NA62 Physics Run I (2016-2018) results presented:

- $K^+ \to \pi^+ \mu^+ \mu^-$ [JHEP11(2022)011] [JHEP06(2023)040]
- ${\cal K}^+
 ightarrow \pi^+ \gamma \gamma$ [Phys.Lett.B 850 (2024) 138513]
- ${\cal K}^+ o \pi^0 e^+
 u \gamma$ [JHEP09(2023)040]
- $\pi^0
 ightarrow e^+ e^-$ [Preliminary results]

NA62 Physics Run II ongoing, stay tuned...

- Experiment is approved until LS3 (2025 or 2026)
- Plan to take as much data as possible
- Analyses done on Run I data will be repeated on the full data set
- $K^+
 ightarrow \pi^+
 u \overline{
 u}$ results from 2021-2022 data samples coming soon