

Muon-Based Charged Lepton Flavor Violating Experiments

Dylan Palo – Postdoc at Fermilab PASCOS 2024 12 July 2024

Overview

- What is charged lepton flavor violation (CLFV) and why search for it?
- Comparison of different CLFV channels
- CLFV experimental field
- Present CLFV experiments with muons:
 - Signal/background
 - Experimental design
 - Status/results

Lepton Flavor Number

- The SM with massless neutrinos contains an inherent symmetries that imply the conservation of lepton flavor number ($L_e L_\mu L_\tau$)
- Electron, muon and tau flavor number are then conserved in all SM interactions without massive neutrinos

$$\left(\begin{array}{c}\nu_{\mu}\\\mu_{L}\end{array}\right) \rightarrow \exp(\mathrm{i}\,\alpha_{\mu})\left(\begin{array}{c}\nu_{\mu}\\\mu_{L}\end{array}\right)$$

What is Charged Lepton Flavor Violation and Why Search for it?

- Adding neutrino mass results in neutrino oscillation
 Observed by several experiments
 → lepton flavor number violation for neutrinos
- No observation charged lepton flavor violation (CLFV)
- Exists in the SM e.g. $\mu \rightarrow e\gamma \mathbf{BR} \sim 10^{-54} \propto [\frac{(\Delta m_{\nu}^2)}{m_W^2}]^2$
- Negligible SM rate → CLFV discovery implies BSM physics
- Many SM extensions predict a dramatic increase in CLFV BR (e.g. μ→eγ SUSY BR ~10⁻¹⁵)
- Lack of discovery reduces parameter space of many physics models

口 🕻 Fermilab

Charged Lepton Violating Theoretical Models

Slide originally by W. Marciano

5

Second Higgs Doublet

Heavy Z' Anomal. Z Coupling

Charged Lepton Violating Theoretical Models

- By searching through many CLFV channels we can probe the underlying physics
- Compare channels through a model-independent effective Lagrangian with two types of theoretical models

e.g. $\mu \rightarrow e\gamma / \mu N \rightarrow eN$

- If $\kappa{<}{<}1$ (e.g. SUSY): BR($\mu \rightarrow e\gamma) \sim \ BR(\mu N {\rightarrow} eN)/\alpha$
- If κ >>1 (e.g. leptoquarks): $\mu N \rightarrow e N$ is at tree level and $\mu \rightarrow e \gamma$ is at loop level
- Experiments are complementary! In $\kappa{<}<1$ models, $\mu \to e\gamma$ result should be validated and checked by $\mu N \to eN$ experiment
- $\mu N \rightarrow e N$ far more sensitive in $\kappa >>1$ models than $\mu \rightarrow e \gamma$

CLFV History With Muons

- Three 'golden channels' of CLFV through muons. All sensitive to a wide range of physics BSM
 - $\mu^+ \rightarrow e^+ \gamma$
 - $\mu^- N \rightarrow e^- N$
 - $\mu^+ \rightarrow e^+ e^- e^+$
- Searches have yet to find signal, but improved due to improved accelerators, detector technology, and experience from predecessors
- This talk will focus on the active searches for these three processes

CLFV History With Muons

- Three 'golden channels' of CLFV through muons. All sensitive to a wide range of physics BSM
 - $\mu^+ \rightarrow e^+ \gamma$
 - $\mu^- N \rightarrow e^- N$
 - $\bullet \quad \mu^+ \to e^+ e^- e^+$
- Searches have yet to find signal, but improved due to improved accelerators, detector technology, and experience from predecessors
- This talk will focus on the active searches for these three processes

Additional CLFV Muon Searches

- These muon experiments can also probe additional channels
- Examples:
 - Recent significant interest in searching for axions: Mu3e $\mu^+ \rightarrow e^+e^-e^+\alpha$ MEG II $\mu^+ \rightarrow e^+\gamma\alpha$
 - Mu2e and COMET phase I will also search for μ[−]N → e⁺N'
 (violation of total lepton number)

Other CLFV Searches

- CLFV is actively being explored through other channels:
 - Belle II, LHCb: τ decays e.g. $\tau \rightarrow e\gamma$
 - NA62 (CERN): K^+ decays e.g. $K^+ \rightarrow \pi \mu e$
 - BES III: J/ ψ decays e.g. J/ $\psi \rightarrow e\tau$
 - ATLAS+CMS: Higgs decays e.g. $H \rightarrow e\tau$

Snowmass Whitepaper (2022)

NA62 UL (90%C.L.)

CLEO ITLAS MS HCb BaBar Belle Belle II (Belle II ($BR(K^+ \to \pi^- \mu^+ \mu^+)$	$< 4.2 \times 10^{-11}$
	$BR(K^+ \to \pi^- e^+ e^+)$	$< 5.3 \times 10^{-11}$
	$BR(K^+ \to \pi^- \pi^0 e^+ e^+)$	$< 8.5 \times 10^{-10}$
	$BR(K^+ \to \pi^- \pi^0 \mu^+ e^+)$	analysis started
	$BR(K^+ \to \pi^- \mu^+ e^+)$	$< 4.2 \times 10^{-11}$
	$BR(K^+ \to \pi^+ \mu^- e^+)$	$< 6.6 \times 10^{-11}$
	$BR(\pi^0 \to \mu^- e^+)$	$< 3.2 \times 10^{-10}$
	$BR(K^+ \to \pi^+ \pi^0 \mu^- e^+)$	analysis started
	$BR(K^+ \to \mu^- \nu e^+ e^+)$	$< 8.1 \times 10^{-11}$
	$BR(K^+ \to e^- \nu \mu^+ \mu^+)$	analysis ongoing

NA62 Collaboration (I. Panichi, 2023)

Motivation and Search Summary

- Active work on many different channels of CLFV!
- CLFV discovery is unambiguous evidence of physics beyond the standard model
- Require the work from many different experiments to get a better picture to the underlying physics

Muon Based CLFV Experiments

C.A.L.M.

Fermilab

7/12/2024 Dylan Palo | Muon Based Charged Lepton Flavor Violation Experiments

12

Focus of Muon CLFV Searches

Background suppression:

- Rare decay searches conveniently have no SM background
- Instead, the background consists of:
 - Time coincidences of 2+ SM interactions
 - Suppressed by precise timing and vertex resolution
 - SM interaction resulting in small momentum neutrinos; process almost mimics the signal
 - Suppressed by momentum/energy resolution
 - Includes detector requirements of low material budgets to suppress MS
 - Additional background via cosmics, pions, etc.

• High beam rates:

• Used to achieve strong limits, but requires detectors (gain loss), trigger, electronics, computational power to handle the high beam rate ($\sim 10^{10} \mu/s$)

🌫 Fermilab

• Must suppress time coincidences to handle the high beam rate

• Calibration:

- Requires precise calibration and alignment to achieve optimal resolutions mentioned above
- Requires measurements of resolutions and expected background for the final analysis

MEG II Experiment

- Search for $\mu^+ \rightarrow e^+ \gamma$ at Paul Scherrer Institut (PSI)
- Upgrade of MEG experiment.. Aims for x10 sensitivity improvement (6 * 10⁻¹⁴ 90% CL)
- Uses the PSI proton ring cyclotron
 - 590 MeV protons
 - Unbunched surface muon beam produced: Stop rate ~ 4 × 10⁷ Hz, 28 MeV muons

MEG II Experiment: Signal/Background

- $\mu^+ \rightarrow e^+ \gamma$ signal: 2-body decay at rest, e/ γ have equal and opposite momentum $(m_{\mu}/2)$
- Background:
 - RMD (radiative muon decay) : $\mu^+ \rightarrow \gamma \ e^+ v_\mu \overline{v_e}$ (small E $v_\mu \overline{v_e}$)
 - Accidental background: high p_{e_+} coincident with γ from RMD, AIF $(e^+ e^- \rightarrow \gamma \gamma)$
- The experiment uses kinematic measurements of the decay products to distinguish between signal/background

MEG II Experiment: Apparatus

- Stopped μ⁺ decay in target; decay products (e, γ) are measured in various detectors
- Similar design to MEG I, but all detectors have been upgraded
- Kinematic estimates at target by propagating e^+ to the target, then projecting γ to e^+ target vertex

$$(\Delta \theta_{e^+\gamma}, \Delta \varphi_{e^+\gamma}, \Delta t_{e^+\gamma}, E_{\gamma}, p_{e^+})$$

US
$$N_{acc} \propto R_{\mu}^{2} + \bullet \Delta E_{\gamma}^{2} \bullet \Delta p_{e} + \bullet \Delta \varphi_{e} + \gamma \bullet \Delta \theta_{e} + \gamma \bullet \Delta t_{e} + \gamma \bullet T$$

Max B~1.3 T
Aconducting magnet
Liquid xenon detector
(LXe)
View from downstream
Pixelated timing counter
(pTC)
Muon stopping target
Cylindrical drift chamber
(RDC)

MEG II Collaboration

COBRA superco

MEG II Experiment: Status

- Experiment has successfully taken 3 physics runs
- Physics result <u>published</u> based on 2021 data. The 2021 run showed the detectors can handle the beam rates and achieve resolutions required for improved sensitivity

MEG II γ: LXe Detector

- One of world's largest liquid Xe detector (800 L)
- Upgrade: inner face PMTs replaced by 4092 15x15 mm² MPPCs (Multi-Pixel Photon Counters)
- Other sides remain covered by PMT photon counters

Kinematic Resolution	MEG I	MEG II 2021 Measured
E _v (%)	2.4	1.9
t _v (ps)	60	70
u _v /v _v /w _v (mm)	5/5/6	2.4/2.4/5

Images from MEG II Collaboration

MEG II e^+ : **CDCH + SPX**

- Cylindrical Drift Chamber (CDCH):
 - Ultra-light open cell stereo drift chamber with 1150 readout drift cells
- Pixelated Timing Counter (SPX):
 - Scintillation tile detector (500 tiles) equipped with SiPM readout
 - High hit multiplicity to improve resolution

Kinematic Core σ	MEG I	MEG II Measured
$p_{e_+}({ m keV})$	380	89
θ_{e+}/ϕ_{e+} (mrad)	9.4 / 8.7	7.2/4.1
t _{e+} (ps)	70	~40
z _{e+} /y _{e+} (mm)	2.4/1.2	2.0/0.74
e+ Efficiency	30	78

CDCH

19 7/12/2024 Dylan Palo | Muon Based Charged Lepton Flavor Violation Experiments

MEG II *e*⁺ **Kinematic Resolution Estimates**

- Data-driven e⁺ kinematic resolution estimate compares two independently measured/fit turns on a single e⁺ track: double turn analysis
- Compare kinematics at a common plane between the turns
- Michel edge used for momentum scale, resolution, and expected background

MEG II Signal and Background PDFs

- Using resolutions and background studies, build the probability density functions for the signal and the background
- Input to likelihood physics analysis

MEG II 2021 Physics Result

- Unblinding resulted in a limit consistent with the median toy MC experiment with a null signal (sensitivity)
- No events centered inside the 5D signal • region
- Based on resolutions and expected total • data, we expect to reach the goal of x10 sensitivity improvement on MEG

Dataset

MEG II 2021

Analysis of 2022 data expected to be published this fall; aim to remain taking data until PSI shutdown in 2027

Sensitivity

3.8

 (10^{-13})

8.8

Future $\mu^+ \rightarrow e^+ \gamma$

- Future experiments will likely need to cope with higher beam rate; suppress time coincidences, pileup effects, gain loss, etc.
- Consider positron spectrometer using pixel detector (Mu3e)
- Convert photon to achieve improved photon resolution, but at the cost of efficiency
- Can gain in sensitivity by having a vertex constraint via photon angle estimate

Mu3e Experiment

- Also located at PSI
- Search for $\mu^+ \rightarrow e^+ e^- e^+$
- Planning to improve the sensitivity of the search by four orders of magnitude! (10⁻¹² → 10⁻¹⁶)
- Slides focus on phase one (10⁻¹⁵ level sensitivity)

Mu3e Experiment Signal/Background

- Signal is a 3-body decay containing 2 e⁺, 1 e⁻ consistent with a muon decay stopped in the target
- Background is analogous to MEG
 - Time+vertex coincidence: Michel e⁺ coincidence with another process(es)
 - SM process with negligible neutrino momentum $(\mu^+ \rightarrow e^+ e^- e^+ \overline{\nu^\mu} \nu^e)$
- Like MEG, Mu3e relies on kinematic measurements to distinguish!

Mu3e Experiment Experimental Design

- Mu3e plans to make use of the upgraded muon beam at PSI (reaching $2 * 10^9 \mu/s$)
- Implement a pixel detector to deal with the high-rate environment
- Pixel detector employs 2844 Monolithic active pixel sensors (HV-MAPS) designed for Mu3e (MUPIX)
- To optimize resolution, pixels are made as thin and small as possible (~100/80 μm)
- Expected to achieve ~<1 MeV resolution (RMS of 440/250 keV for phase I/II respectively)

1 cm

Mu3e Experiment Experimental Design

- In addition, a series of scintillating fibers/tiles precisely measure the timing
- Immediately after the inner-pixels, the e⁺e⁻ intersect scintillating fibers for initial time estimate at pixel
- Finally, the e⁺e⁻ intersect an array of scintillating tiles for the precise timing measurement
- $\sigma_t < 250/100$ ps in the scintillating fibers/tiles respectively

1 cm

Mu3e Experiment Status

- Prototype detectors have operated in the Mu3e magnet, in helium with beam on
- Plan is to commission the inner detector system in 2024
- Aiming for a full engineering run in 2025 with physics in 2025/2026

$\mu^- N \rightarrow e^- N$ Mu2e + COMET + DeeMe

- Three upcoming experiments searching for ٠ $\mu^- N \rightarrow e^- N$: Mu2e, COMET, and DeeMe
- DeeMe has commissioned their detector and • expect to take data in upcoming years (x10 sensitivity improvement over current UL of $7 * 10^{-13}$, SINDRUM II)
- Mu2e and COMET phase 2 aim for ٠ x10000 sensitivity improvement
- COMET is currently constructing phase I (x100 sensitivity improvement) with the intent of being physics ready by 2026
- Will focus on Mu2e, but considerations for COMET detector performance are very similar

COMET Phase-II

Mu2e Status

- The Mu2e experiment at Fermilab is presently in the construction phase, with magnets and detectors expected in the Mu2e hall for cosmic runs starting in 2025
- Mu2e will have beam for the full 2027 calendar year for commissioning and physics data-taking
- Will detail the beamline, magnet system, and detector system used to optimize the signal/background

$\mu^- N \rightarrow e^- N$

$$R_{\mu e} = \frac{\mu^- + A(Z,N) \rightarrow e^- + A(Z,N)}{\mu^- + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$$

- Signal:
 - Conversion of a muon in the field of the target nucleus (1S state)
 - Coherent recoil of the muon off the target nucleus
 - Results in monochromatic electron: $E_e = m_\mu c^2 - B_\mu(Z) - C(A)$ = **104.97 MeV** ~ m_μ - 0.6 MeV
- No time coincidence like other mentioned searches, any signal energy electron can mimic the signal!

$\mu^- N \rightarrow e^- N$ Main Backgrounds

- Decay in orbit (DIO):
 - Decay in the presence of the nucleus: small "recoil tail" when muon exchanges momentum with the nucleus
 - Analogous to RMD MEG background (negligible momentum neutrinos)
 - Requires precise momentum resolution
- Radiative pion capture (RPC)
 - $\pi N \rightarrow \gamma N^*$
 - If π hits µ target, can make high energy photon that can produce signal energy electron (e.g. pair produce)
 - Suppressed by pulsed beam
- Cosmic rays:
 - Cosmic rays (e.g. muon) can intersect material (stopping target) and can break free an electron at the signal energy
 - Indistinguishable from the signal
 - Surround entire detector with cosmic ray "veto"

Mu2e Beamline

- Proton beam intersects a tungsten target, results in π that decay to μ in flight
- Unlike MEG II or Mu3e, Mu2e implements a "pulsed" proton beam at ~6 MHz (1700 ns)
- Pulses "wait out" the π RPC background: $\tau_{\pi} \ll \tau_{\mu \text{ in Al}}$ (864 ns)
- Start data-collection once π have decayed
- Require extinction of 10^{-10} ; measured by extinction monitor

Mu2e Magnets

- Production solenoid removes vast majority of unwanted particles from proton target interactions and remaining protons; backwards π then decay to muons
- Transport solenoid 'S' shape selects negative charge and desired muon momentum
- Detector solenoid is grated; curves signal electrons towards from the µ-target to the tracker+calorimeter

Mu2e CRV

- Cosmic ray veto module surrounds the detector solenoid aiming to eliminate background from cosmics
- 4 layers, O(10k) fibers+SiPMs
- All modules constructed!

Mu2e Tracker

- Mu2e *e*⁻drift chamber
- DIO spectrum at end-point motivates precise momentum resolution requirement (goal ~150 keV)
- Vast majority of *e*⁻ to escape through inner hole without interaction
- Total of ~20k 5 mm diameter straws
- 120 degree 'panels' with 96 straws
- Oriented and positioned to optimize acceptance, resolution, etc. (216 panels, 36 planes, 18 stations)
- ~1.6 m diameter/3.2 m length
- 33/36 planes completed!
- Expected completion in Early 2025

Assembled Station

Assembled Planes

Mu2e Calorimeter

- 2 circular disks with a total of 674 undoped CsI crystals
- Objectives:
 - Particle identification (µ at signal momentum)
 - Track seeding (T0)
 - Stand alone trigger
- Disks are complete; currently cabling and preparing for deliver to hall

Mu2e Expected Physics Background Rates

• Dominant sources of background are expected from cosmics and DIO (0.35/0.41)

Expected Background for Full Runtime

Mu2e Collaboration

Mu2e II - AMF - PRISM

- Future μ⁻N → e⁻ N experimental designs being discussed at both US and Japanese facilities are motivated by further background suppression (e.g. Fermilab: B. Echenard et al. 2203.08278)
- Example Improvements:
 - Likely requires alternate beam structure e.g. muon storage ring to suppress background
 - Low momentum muon beam (30 MeV)
 - Different target materials

J. Pasternak et al., 2018; Adapted from Y. Kuno 2005

Summary

- CLFV discovery implies physics BSM
- MEG II is taking its 4th year of physics data at PSI; first physics result is published and expects to reach goal of x10 improvement beyond MEG
- Mu3e experiment is in the commissioning phase with data-taking starting as soon as 2025 and plans to improve beyond current limit by x10000
- Mu2e and COMET $\mu^- N \rightarrow e^- N$ experiments plan for x10000 sensitivity improvement and physics data-taking in a few years

