Electroweak Baryogenesis and its (Future) Collider Probes

Oleksii Matsedonskyi

TUM

PASCOS 2024

Intro: EWBG

First order EW phase transition proceeds through bubble nucleation:

Shaposhnikov '87 Cohen,Kaplan,Nelson '91 **3**

First order EW phase transition proceeds through bubble nucleation:

First order EW phase transition proceeds through bubble nucleation:

First order EW phase transition proceeds through bubble nucleation:

First order EW phase transition proceeds through bubble nucleation:

First order EW phase transition proceeds through bubble nucleation:

First order EW phase transition proceeds through bubble nucleation:

How to get first-order EWPT?

How to get first-order EWPT?

New particles s.t. thermal/quantum corrections modify
 SM Higgs potential

New field directions

$$V_{\text{tree}}(h,S) = -\frac{1}{2}\mu^2 h^2 + \frac{1}{4}\lambda h^4 + \frac{1}{2}\lambda_{HS}h^2 S^2 + \frac{1}{2}\mu_S^2 S^2 + \frac{1}{4}\lambda_S S^4$$

- Only an extremely small explicit $S \rightarrow -S$ breaking is needed to get B asymmetry and remove domain walls. Espinosa et al, 1110.2876
- Consider the case with S $\rightarrow -S$ respected by the EWSB minimum

(For models with spontaneous or sizeable explicit breaking see 2210.16305,1911.10206)

$$V_{\text{tree}}(h,S) = -\frac{1}{2}\mu^2 h^2 + \frac{1}{4}\lambda h^4 + \frac{1}{2}\lambda_{HS}h^2 S^2 + \frac{1}{2}\mu_S^2 S^2 + \frac{1}{4}\lambda_S S^4$$

Pheno: S-h mixing

$$V_{\text{tree}}(h,S) = -\frac{1}{2}\mu^2 h^2 + \frac{1}{4}\lambda h^4 + \frac{1}{2}\lambda_{HS}h^2 S^2 + \frac{1}{2}\mu_S^2 S^2 + \frac{1}{4}\lambda_S S^4$$

•
$$S \rightarrow -S$$
 symmetry:

⇒ no sizeable Higgs-S mixing

 $\sin\theta \propto \lambda_{HS} \langle h \rangle \langle S \rangle$

$$\Rightarrow$$
 loop-induced effects of λ_{HS}

Pheno: c_H

M.Carena et al, 2104.00638

SM + Singlet Pheno: h^3

SM + Singlet Intermediate Conclusion

$$V_{\text{tree}}(h,S) = -\frac{1}{2}\mu^2 h^2 + \frac{1}{4}\lambda h^4 + \frac{1}{2}\lambda_{HS}h^2 S^2 + \frac{1}{2}\mu_S^2 S^2 + \frac{1}{4}\lambda_S S^4$$

Most minimal model:

- Will be partly probed at the next (?) collider
- EDMs, tree level Higgs couplings modifications suppressed
- GW signal typically too weak (where $v_{wall} < 1$) J.Ellis et al, 2210.16305

Intermediate Conclusion

Anything more exciting?

- EWBG models can be arbitrarily more complex and also provide much more signals
 - sizeable Z_2 breaking
 - 2HDM
 - embedding in more "complete" models with their own typical signals

I will now consider the opposite limit: models which are already on the border of exclusion, yet motivated by other considerations

Origin of EWBG vs EXP Tensions

in Standard Model: high-T symmetry restoration

in Standard Model: high-T symmetry restoration

in Electroweak Baryogenesis scenarios

in Electroweak Baryogenesis scenarios

in Electroweak Baryogenesis scenarios

- new physics responsible for CP violation and first-order phase transition is at a few 100 GeV scale
- ~unique prediction for the energy scale of new physics
 EXP TENSIONS

EW symmetry Non-Restoration

EW symmetry Non-Restoration

new physics responsible for CP violation and first-order phase transition is **above** 100 GeV scale

High-T EWBG

SM states

$$\frac{\lambda_t}{\sqrt{2}} \,\overline{t}th \quad \Rightarrow \quad h \cdots \underbrace{t \quad t}_{t \quad t} h$$

$$\Rightarrow \quad \delta V_h = \frac{1}{8} \lambda_t^2 T^2 h^2$$

 $\Rightarrow \begin{array}{l} \text{positive thermal mass \&} \\ \text{restoration at } T \simeq 160 \, \text{GeV} \end{array}$

new light scalars

Weinberg '74 (toy model) Meade, Ramani, 1807.07578 Baldes, Servant, 1807.08770 Glioti, Rattazzi, Vecchi, 1811.11740

new light scalars

Weinberg '74 (toy model) Meade, Ramani, 1807.07578 Baldes, Servant, 1807.08770 Glioti, Rattazzi, Vecchi, 1811.11740

new light scalars

Weinberg '74 (toy model) Meade, Ramani, 1807.07578 Baldes, Servant, 1807.08770 Glioti, Rattazzi, Vecchi, 1811.11740

 $\Rightarrow \quad \delta V_h \sim \lambda_{h\chi} T^2 h^2$

 $\Rightarrow \delta V_h \sim \frac{m_N}{\Lambda} T^2 h^2$

Weinberg '74 (toy model) Meade, Ramani, 1807.07578 Baldes, Servant, 1807.08770 Glioti, Rattazzi, Vecchi, 1811.11740

SNR: # of new d.o.f.

Iarge multiplets needed for perturbativity:

• $\mathcal{O}(10)$ Dirac **fermions** for T < 1 TeV ($T_{\rm SNR}^{\rm max} \sim \sqrt{n} m_N$)

• $\mathcal{O}(100)$ scalars

In 2HDM: ~5 less d.o.f. and DM candidate M.Carena,C.Krause,Z.Liu,Y.Wang 2104.00638 OM,J.Unwin,Q.Wang 2107.07560

High-temperature EWPT

Pheno: c_H

M.Carena, C.Krause, Z.Liu, Y.Wang 2104.00638

Glioti, Rattazzi, Vecchi, 1811.11740

 $\mathcal{O}_H = \frac{1}{2} (\partial_\mu |H|^2)^2$

$$\frac{c_H}{\Lambda^2} \sim n \frac{4}{16\pi^2} \frac{1}{\Lambda^2}$$

future sensitivities (1 σ): HL-LHC: $\Lambda/\sqrt{|c_H|} < 1.4(1.8) TeV$ +**FCC-ee**: $\Lambda/\sqrt{|c_H|} < 3.2(5) TeV$ J de Blas, Eur. Phys. J. Plus (2021) 136:897

High-temperature EWPT

Pheno: c_H

Glioti, Rattazzi, Vecchi, 1811.11740 M.Carena,C.Krause,Z.Liu,Y.Wang 2104.00638

$$\frac{c_H}{\Lambda^2} \sim n \frac{4}{16\pi^2} \frac{1}{\Lambda^2}$$

future sensitivities (1 σ): HL-LHC: $\Lambda/\sqrt{|c_H|} < 1.4(1.8) TeV$ +**FCC-ee**: $\Lambda/\sqrt{|c_H|} < 3.2(5) TeV$ J de Blas, Eur. Phys. J. Plus (2021) 136:897

High-T EWSB vs Naturalness

Can SNR be motivated by, or at least compatible with EW naturalness-motivated physics?

no quadratic UV sensitivity of Higgs mass

$$\Rightarrow$$

add new d.o.f. such that $\delta V_{1loop} \propto \Lambda^2 \operatorname{STr}[M^2] \neq f[h]$

no quadratic UV sensitivity of Higgs mass

$$\mathbf{STr}M^2 = \mathbf{Tr}[M_0^2 - 2|M_{1/2}|^2 + 3M_1^2] \neq f[h]$$

• no quadratic UV sensitivity of Higgs mass $\mathbf{STr}M^2 = \mathbf{Tr}[M_0^2 - 2|M_{1/2}|^2 + 3M_1^2] \neq f[h]$

thermal potential (high-T)

$$\delta V_T \supset \frac{1}{24} T^2 \mathbf{Tr} [M_0^2 + |M_{1/2}|^2 + 3M_1^2]$$

H.E.Haber '82 M.Mangano '84 44

way around, e.g. additional superfields with non-renormalizable interactions and large-n Dvali, Tamvakis '96

Dvali, Tamvakis '96 Bajc, Melfo, Senjanovic '96 OM, Unwin, Wang 2211.09147

same-spin naturalness (e.g. Goldstone Higgs)

no quadratic UV
 sensitivity of Higgs mass

$$\mathbf{STr}M^2 = \mathbf{Tr}[M_0^2], \ 2|M_{1/2}|^2, \ 3M_1^2] \neq f[h]$$

• thermal potential $\delta V_T \supset \frac{1}{24} T^2 \mathbf{Tr}[M_0^2, |M_{1/2}|^2, 3M_1^2] \neq f[h]$ (high-T)

e.g. top effect
$$\delta V_h = \frac{1}{8} \lambda_t^2 T^2 h^2$$
 is cancelled \Rightarrow potential SNR

Twin Higgs

 Z_2

Chacko et al, hep-ph/0506256

SM states couplings to the Higgs $\propto \sin h/f$

Twin states couplings to the Higgs $\propto \cos h/f$

same-spin naturalness (e.g. Goldstone Higgs)

Twin Higgs

Chacko et al, hep-ph/0506256 also talk by Marcin Badziak

same-spin naturalness (e.g. Goldstone Higgs)

Twin Higgs

Chacko et al, hep-ph/0506256

Z₂ breaking by light quark/ lepton Yukawas

 $\tilde{\lambda}_q f \bar{q} q \cos h / f$

OM, 2008.13725

Concrete EWBG model with SNR

Composite Higgs

→ Higgs is a bound state of new strong interactions confining at $f \sim 1$ TeV

spectrum:

Kaplan,Georgi '84 Agashe,Contino,Pomarol '04**51**

Phase Transitions in CH models

Phase Transitions in CH models

Phase Transitions in CH models

1-step: if T(confinement) < T(EWSB)

 $h \propto \chi$ and EWPT is 1st order if confinement PT is

Confinement Phase Transition

Confinement Phase Transition

- If $T_R > 130 \, GeV$ the EW symmetry is ~restored again (EW sphalerons are on)
- To keep EWBG results we need

$$T_R \lesssim 130 \, GeV \implies m_{\chi} \lesssim 500 \, GeV \times \frac{800 \, GeV}{f} \frac{1}{\tilde{N}_c^{1/2}}$$

LHC bounds

*extra N for $gg\chi$

LHC bounds

LHC bounds

Summary

➤ EWBG necessarily predicts ≤ TeV scale new physics, providing an important target for future colliders

Large variety of implementations with various signatures

 Combined explanation with EW naturalness may require to alter the h VEV thermal history, still allowing the near future collider tests Thank you!