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Exact Quantum Entropy
    Any black hole in  any phase (= compactification) of 

the theory should be interpretable as an ensemble 
of quantum states including  finite size  quantum 
gravity corrections. 

•  Universal and extremely stringent constraint 

•  The famous Bekenstein-Hawking formula says that 
entropy is proportional to the area (in Planck units) 
for large area. The work of Strominger-Vafa gave its 
statistical interpretation for certain black holes.  

•   Finite area corrections connect to a broader 
problem of Quantum  Holography at finite N.  
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 Summary
•     Striking progress over the past decade in computing exact 

quantum entropy of certain supersymmetric black holes 
including all perturbative and non-perturbative 
corrections to the Bekenstein-Hawking entropy.  

•      The resulting entropy is a logarithm of an integer in 
precise agreement with integral microscopic 
degeneracies.  

•      Nontrivial interplay between topics in number theory 
and topology like modular forms, Rademacher 
expansion, Kloosterman sums, Chern-Simons theory and 
methods in physics like localization in supergravity.  

•      Connections with recent developments like the SYK 
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Some Questions
1. What is the quantum generalization of 

Bekenstein-Hawking formula for black holes 
with finite area in Planck unit? 

2. Does it have a statistical interpretation beyond 
the leading answer? 

3. What is the ensemble in which it is defined?  
4. Is it calculable including both perturbative and 

nonperturbative corrections?  
5. Is AdS/CFT holography valid at finite N? 
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Quantum Entropy and Holography
•     Near horizon of supersymmetric BPS black holes in 

4d has an                     factor  

• One can apply usual rules of holographic 
correspondence keeping in mind some of the 
important peculiarities of 
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AdS2 × S2

AdS2

ds2 = l2
* [(r2 − 1)dθ2 +

dr2

r2 − 1
+ dψ2 + sin2 ψdϕ2]

FI = − i eI
*dr ∧ dθ + PI sin ψ dψ ∧ dϕ , XI
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                              Holography

•    Bulk           is Poincaré disk. Put a cutoff at  r = r0    

•      Boundary            is a finite dimensional Hilbert space 
of dimension                and zero Hamiltonian  H=0. 
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AdS2/CFT1

d(Q, P)
CFT1

ZCFT(Q, P) := Tre(−2πr0H) = d(Q, P)

AdS2
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Quantum Entropy
•  Exponential of quantum entropy is given by  Sen (09)   

•  Path  integral over all string fields  with an insertion 
of a Wilson line and with appropriate boundary 
conditions and renormalization.  

•  Reduces to Bekenstein-Hawking-Wald for large (Q, P) 

•  Quantum holography requires 
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W(Q, P) = d(Q, P)

W(Q, P) := ⟨exp (−
i
2

QI ∫ AI)⟩ren
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           W(Q, P)          d(Q, P)

       Black Hole (Q, P)              Brane (Q, P)

    Quantum  Entropy       Counting of States

          AdS2       CFT1

  Quantum Geometry         Hilbert Space

                   A quantum generalization  of  
Bekenstein-Hawking                  Boltzmann 

                     Can we compute both sides?





                      

Defining W(Q, P) AdS/CFT 
Counting d(Q, P) D-branes, Duality
Degeneracy Index, Modularity
Path integral Localization
Sugra Localization Off-Shell Sugra
Sugra Action Nonrenormalization
Kloosterman phases Chern-Simons terms
Wall-crossing Mock Jacobi Forms
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Choice of Ensemble
    The gauge field behaves as 

     A natural choice is to hold the growing mode fixed. 
Thus hold the electric field (and hence the charge) 
fixed and let the chemical  potential fluctuate.  

    Contrast this with the higher dimensional case.  
    
         Corresponds to  microcanonical ensemble. 
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AI
θ ∼ − ieIr + μI ; Frθ = − ieI
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Degeneracy = Index
•  The near horizon              has SU(1, 1) symmetry. 

•  With four supersymmetries, the closure of algebra 
implies SU(1, 1|2) supergroup as symmetry. 

•  Hence, horizon must have   SU(2) symmetry. 
Consistent with the fact that supersymmetric black 
holes in 4d are spherically symmetric.  

•   Microcanonical ensemble  implies J = 0.   

•   All horizon degrees of freedom are bosonic!
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AdS2

Tr(1) = NB + NF = Tr(-1)F = NB − NF
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Dyonic States in N=8 theory
Type II  on     .  Dyons with charge vector (Q, P) 
Duality invariant      
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Δ = Q2P2 − (Q ⋅ P)2

Z(τ, z) =
∞

∏
r

(1 − qry)2(1 − qry−1)2

(1 − qr)4
(y := e2πiz)

=
∞

∑
n=−1

c(n, l)qnyl ;

d(Δ) = (−1)Δ+1C(Δ)

T6

c(n, l) = C(4n − l2)



QUANTUM ENTROPY OF BLACK HOLES

      To attempt such a comparison it’s useful to use 
           Hardy-Ramanujan-Rademacher expansion 
               Exact generalization of Cardy formula 

       
     
           The c=1 Bessel function  sums all perturbative   
      corrections to entropy. The c>1 are non-perturbative 
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W(Δ) = d(Δ)?

d(Δ) =
∞

∑
c=1

c−9/2Ĩ7/2(
π
c

Δ)Kc(Δ)

Ĩ7/2(z) ∼ exp[z − 2 log z +
c
z

+ ⋯]
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Computing 
•     The structure of the microscopic answer suggests 

that              should have an expansion  
   

•      We will find that                 arises from an         
orbifold saddle point of the path integral.  

•      The higher c are exponentially subleading. Unless 
one can evaluate each of them exactly it is not 
particularly meaningful to add them.  

    Equivariant Localization in supergravity  enables us 
to do this. 
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W (�)

W (�)

W (�) =
1X

c=1

Wc(�)

Wc(�) Zc



QUANTUM ENTROPY OF BLACK HOLES

Modular Symmetry

•     A holomorphic function             on the upper half 
complex plane is a modular form of weight k, if it 
transforms as  

     
      
    for a, b, c, d, k  integers and ad-bc =1 

     The matrices                   form the group SL(2, Z)   

     under matrix multiplication. Highly Symmetric.
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F (
a⌧ + b

c⌧ + d
) = (c⌧ + d)kF (⌧)

✓
a b
c d

◆

F (⌧)
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Jacobi forms
               A Jacobi form of weight k and index m  
   

  
`modular’ with weight k  

  `elliptic’ in z with index m  
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  Our              is a Jacobi form of weight 2 index 1.Z(τ, z)

φk,m(τ, z)

φ(τ, z + λτ + μ) = e−2πim(λ2τ+2λz)φ(τ, z)
(∀ λ, μ ∈ ℤ)
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    Elliptic and modular properties again imply a bit more 
involved Hardy-Ramanujan-Rademacher expansion: 

  
   Exact degeneracies are known also for dyonic states  in 

N=4 in terms of Fourier coefficients of  Siegel modular 
forms and exhibit  an intricate structure of wall-
crossings in the moduli space. They connect to the 
mathematics of Mock modular forms introduced by 
Ramanujan a century ago. More general N=2 
degeneracies relate to Donaldson-Thomas invariants.  
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C(�) = N
1X

c=1

c�9/2Ĩ7/2
�⇡

p
�

c

�
Kc(�)
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         Generalized Kloosterman Sum
  

      
     Intricate number theoretic phases, highly subleading in 

large area expansion, but essential  for integrality.  
Quantum holography requires that  the bulk must 
reproduce  these  nonperturbative phases. And it does! 
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X

�cd<0;
(d,c)=1

e2⇡i
d
c (�/4) M�1(�c,d)⌫1 e2⇡i

a
c (�1/4)

Kc(�)

⌫ = � mod 2

M�1(�)⌫µ = C
X

✏=±

c�1X

n=0

✏ e
i⇡
2rc [d(⌫+1)2�2(⌫+1)(2rn+✏(µ+1))+a(2rn+✏(µ+1))2]
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Power of Quantum Holography (AdS2 /CFT1)

 The path integral  W(∆) in the near horizon  AdS2  can 
be defined as a generalization of  Wald entropy. 

Includes nonlocal effects from massless loops.     
 Quantum Holography implies two things: 

1.  W(∆) = d(∆) (nontrivial prediction for a path integral) 
     Path integral must be an integer! 

2. d(∆)  = W(∆) (nontrivial prediction for an index) 
     Index  must be positive! (index = degeneracy.) 
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  Localization of Path Integrals
   We are interested in a path integral of the form 

    with a supersymmetric measure and action. 
    Localization techniques  make it possible to evaluate 

such integrals. We have learnt a great deal  about 
the noperturbative structure of  QFT which was 
otherwise inaccessible without localization.  

  Duistermaat-Heckmann(82)..Witten (88) Nekrasov (02) Pestun (04) … 

     Can we localize supergravity path integrals?  
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Z = ∫ℳ
dμ eSren
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Localization
    Consider a supermanifold         with an integration 

measure      . Let      be an odd (fermionic) vector 
field on this manifold that satisfies: 

1.                 for a compact bosonic vector field      . 
2.                        i. e. the measure is invariant under    .  

  Note that Q is nilpotent on H-invariant configurations  
  Allows one to study `Equivariant Cohomology’  

  Field space is an (infinite-dimensional) supermanifold 
Q is a  supersymmetry, H is a Killing field. 
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ℳ
dμ

Q2 = H

Q

H
Qdivμ(Q) = 0
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Deformation Invariance
• Consider a deformation of the original integral 

   where V is an H-invariant fermionic function 

• One can then prove easily that 

24

Z(λ) = ∫ℳ
dμ eSren−λQV

d
dλ

Z(λ) = ∫ℳ
dμ Q(V eSren−λQV) = 0

H(V ) = Q2(V ) = 0;
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        Beauty of Off-Shell Supergravity
1.     Supersymmetry transformations are written 

down once and for all (much like coordinate 
transformations) independent of the action. 

–     Algebra closes without using equations of motion. 

–     Essential for using  SUSY inside a path integral. 
2.     It nicely separates the problem into two parts. 

–     Find the offshell localizing solutions once and for 
all independent of the physical action.     

–     Evaluate the renormalized action on the localizing  
manifold for any given compactification. 
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     Challenges in Supergravity
•     In Euclidean gravity the conformal factor has a 

wrong sign kinetic term. 

•     Since metric is dynamical what does it mean to 
have a background with a symmetry? 

•     At a more fundamental level, since all symmetries 
such as Q and H are gauge symmetries, how can 
we even get started with localization?     

•    Unlike in QFT, the action has higher derivative terms 
and is nonrenormalizable. In particular, there are 
infinite number of terms in the effective action.
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Strategy
•     Use background field BRST quantization:              

field = background field + quantum field.  

•      Gauge parameters that don’t vanish at infinity 
generate  the Killing symmetries of the 
background. Use these symmetries to localize.     

•      Use off-shell superconformal supergravity.  

•     Nonrenormalization theorem:  nonchiral D-terms 
don’t contribute. Huge simplification.  

•    A single prepotential  F specifies the chiral terms. 
Moreover receives no quantum corrections.
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          Off-shell Localizing Solutions

•     One finds off-shell localizing instantons in AdS2 for 
supergravity coupled to      vector multiplets with 
scalars XI  and auxiliary fields  

    

    These solutions are universal in that they are 
independent of the physical action and follow 
entirely from the off-shell susy transformations.  

     Valid for any physical action.                
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nv

YI
12 = YI

21 := YI

XI = XI
* +

CI

r
, YI =

2CI

r
, CI ∈ R ; (I = 0,1,…nv)
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Supergravity Action

29

8⇡e�1L

= (�i(XI F̄I � FIX̄
I)) · (�1

2
R)

+
⇥
irµFIrµX̄I

+
1

4
iFIJ(F

�I
ab � 1

4
X̄IT ij

ab "ij)(F
�abJ � 1

4
X̄JT ij

ab "ij)

� 1

8
iFI(F

+I
ab � 1

4
XITabij "

ij)T ij
ab "ij

� 1

8
iFIJY

I
ijY

Jij � i

32
F (Tabij "

ij)2

+
1

2
iF bA

bC � 1

8
iF bA bA("

ik"jl bBij
bBkl � 2 bF�

ab
bF�
ab)

+
1

2
i bF�abF bAI(F

�I
ab � 1

4
X̄IT ij

ab "ij)�
1

4
i bBijF bAIY

Iij + h.c.
⇤

� i(XI F̄I � FIX̄
I) · (raVa �

1

2
V aVa �

1

4
|Mij |2 +Da�i

↵Da�
↵
i) .



QUANTUM ENTROPY OF BLACK HOLES

Renormalized Action
  The renormalized action for prepotential F simplifies: 

                          
                              
                            is the off-shell value of        at the origin  
       of the Poincaré disk.                                                 
                                                Dabholkar Gomes Murthy (11, 13) 
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Sren(�, q, p) = �⇡qI�
I + F(�, p)

F(�, p) = �2⇡i


F
⇣�I + ipI

2

⌘
� F̄

⇣�I � ipI

2

⌘�

XI
1

2
(�I + ipI)
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Final Answer

 A finite dimensional integral determined entirely in  
terms of the prepotential  (+ possibly point instantons). 
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Zdet(ϕ) = exp [−K(ϕ + iP)(nv − nh + 23/12)]
e−K := − i(XIF̄I − X̄IFI)

W1(Q, P) = ∫ [dϕ] e−πQIϕI+ImF(ϕ+iP) Zdet(ϕ) Zinst
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Final integral
    The prepotential for the truncated theory is  

    (dropping the extra gravitini multiplets of N=8) 
       The  path integral reduces to the Bessel integral   

(more complete justification later) 
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W1(�) = Ĩ7/2(⇡
p
�)

W1(�) = N

Z
ds

s9/2
exp [s+

⇡2�

4s
]

F (X) = �1

2

X1

X0

7X

a,b=2

CabX
aXb (nv = 7)
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Orbifold Contributions  
•     Including the M-theory circle,  there is a family of  

geometries           that are asymptotically                     : 

   

• Freely acting        orbifolds of BTZ black hole.  
   Related to the                   family in    

   

 Localization justifies keeping these subleading saddles. 
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ds2 = (r2 � 1

c2
)d✓2 +

dr2

r2 � 1
c2

+R2

✓
dy � i

R
(r � 1

c
)d✓ +

d

c
d✓

◆2

AdS2 ⇥ S1

Zc

SL(2,Z) AdS3

Mc,d
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Subleading Bessel Functions

•     Contributions from these smooth orbifolds  explain 
the Bessel functions for all c with correct argument  
because for each orbifold the localized solutions 
are the same but the renormalized action is 
reduced by a factor of c 

•     What about the Kloosterman sums?  
    How can a SUGRA path integral possibly reproduce  

this  intricate number theoretic structure ? 
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         Generalized Kloosterman Sum
  

      
       Number theoretic phases essential  for integrality  
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X

�cd<0;
(d,c)=1

e2⇡i
d
c (�/4) M�1(�c,d)⌫1 e2⇡i

a
c (�1/4)

Kc(�)

⌫ = � mod 2

M�1(�)⌫µ = C
X

✏=±

c�1X

n=0

✏ e
i⇡
2rc [d(⌫+1)2�2(⌫+1)(2rn+✏(µ+1))+a(2rn+✏(µ+1))2]
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Chern-Simons-Witten Theory

•     Our localization analysis so far ignored the topology.  

•     The Chern-Simons terms in the bulk and the 
boundary  terms are sensitive to the global 
properties  of  

•     Additional saddles specified by  holonomies of flat 
connections. Various phases from CS  terms 
assemble nontrivially into  the Kloosterman sum. 

•     Closely related to knot invariants of Lens space        
using the surgery formula. 
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Mc,d

Lc,d
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Kloosterman  and Chern-Simons
  

     In our problem we have three relevant groups 
                                          

                                                 Dabholkar Murthy Gomes (14)
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SU(2)RSU(2)LU(1)nv+1
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Z
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Tr

✓
A ^ dA+
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X
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Multiplier System from 
There is an explicit representation of the Multiplier 

matrices that is suitable for our purposes. 

Unlike               the holonomies of               are not 
constrained by supersymmetry and have to be 
summed over which gives precisely this matrix. 

 (Assuming  usual shift of k going to k +2 ) 
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SU(2)L

M�1(�)⌫µ = C
X

✏=±

c�1X

n=0

✏ e
i⇡
2rc [d(⌫+1)2�2(⌫+1)(2rn+✏(µ+1))+a(2rn+✏(µ+1))2]
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Remarkably AdS path integral  reproduces all details.  
A path integral (a complex analytic continuous object)  
yields an integer (a number theoretic discrete object).                                         

    W(∆) = integer! 

An IR Window into the UV 

•     It  counts with precision nonperturbative states with 
masses much higher than the string scale. 

•     If we did not know the spectrum of branes a priori 
we could in principle deduce it. e.g. in N=6 models!  
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Cardy goes to Hardy! 
    We defined the quantum entropy             as a path 

integral of N=8 supergravity fields on  
  
     

Classical Bekenstein-Hawking Entropy = Cardy 
Exact Quantum Entropy = Hardy 

  It’s remarkable and highly nontrivial that  all  
quantum corrections are computable in string 
theory  which combine into a specific integer.  
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AdS2 × S2

W(Δ) ∼ exp[
A(Δ)

4
] = exp[π Δ] ∼ d(Δ) , Δ ≫ 1

W(Δ)
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Localization in Supergravity
    Localization in gauge theory has some subtleties 

since susy algebra closes up to gauge 
transformations. Problem is exacerbated in sugra. 

•    The `structure constants’ of supergravity gauge 
algebra are field-dependent: soft algebra 

•    The metric is dynamical. 
    Earlier we dealt with them heuristically. One can set 

up a Background Field BRST formalism to deal with 
both these problems in a systematic way by 
deforming the BRST Q into equivariant Q.                                        

                                         de Wit Murthy Reys; Jeon Murthy
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Off-shell N=8 supergravity
• Off-shell formulation of the full N=8 algebra requires 

infinite number of auxiliary fields. 

• We used an N=2 truncation which was a good start 
for finding the localizing instantons but is is not 
satisfactory for computing the determinants.  

•  It is sufficient to realize only two super symmetries 
off-shell but on the entire supermultiplet of N=8 

 (Reys-Murthy; Bergeshoeff-de Roo-de Witt; Ciceri-Sahoo; 
Ilesieu-Murthy-Turiaci)  
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Treatment of the Infinity of Zero Modes
• Zero modes of the quadratic fluctuation operator. 

•  Arbitrary fluctuations of the boundary of the metric  
corresponding to  or one copy of Virasoro. 
except the three dimensional global  
Killing symmetries generated by . 

•   The action for these zero modes is precisely given by 
the Schwarzian action and the integral over the 
zero modes gives a volume factor. 

•   We need to evaluate the volume   as a 
function of charges and the temperature.

Diff(S1)
SL(2,R)

{L0, L1, L−1}

Vol0(Q, T )
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Relation to SYK
•     The physics of a near-extremal black hole in a range 

of parameters (temperature and chemical 
potential) is fully captured by these Camporesi-
Higushi `graviton zero modes’ with Schwarzian 
action related to SYK model (Moitra, Sake, Trivedi) 

•    Because of the three bosonic zero modes,                                                       

                                      

•    The volume goes to zero in the extremal limit and 
particular temperature dependence is precisely 
what is obtained in the SYK model.  

      

Vol0(Q, T ) = (Q3T )3/2
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Supersymmetric Black Holes
•     Fortunately, for supersymmetric black holes we 

also have to deal with three (complex) fermionic 
zero modes which precisely cancel this 
temperature dependence with a finite answer in 
the zero temperature limit. 

•     The volume of zero modes also picks up factor of  
`c ‘ in the orbifold limit neatly explaining all factors.      

        (Ilesieu, Murthy, Turiaci)  

                d(Δ) =
∞

∑
c=1

c−9/2 Ĩ7/2 (
π
c

Δ) Kc(Δ)
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