## Towards a Muon Collider

Karri Folan DiPetrillo University of Chicago PASCOS 2024



# Open questions in particle physics

#### About the Standard Model

What is the nature of the Higgs Boson & electroweak symmetry breaking?





#### Karri Folan DiPetrillo

#### And the observed universe What is dark matter? What causes baryogenesis?



# Why 10 TeV?

# Need to compare reach from precision (indirect) and energy (direct)

eg. modified higgs couplings implies new particles → need to consider realistic models not just EFT



#### Will discuss a few key examples

|                 | HL-LHC    | Higgs Factory |
|-----------------|-----------|---------------|
| liggs Precision | ~few%     | ~0.1%         |
| ndirect Reach   | 0.1-1 TeV | ~few TeV      |
| Direct reach    | ~1 TeV    | _             |





### Microscopic nature of the higgs

#### Is there new physics preventing $m_h$ from being pulled up to Plank scale?



#### Karri Folan DiPetrillo

Data & theory suggest strongly coupled particles > 1 TeV



## Electroweak symmetry breaking

Was there a first order phase transition? Is electroweak symmetry restored at high temperatures? Requires measuring Higgs self-coupling with few % uncertainty





Producing enough multi-Higgs events is only possible at a 10 TeV scale collider







### Dark Matter

#### We've yet to probe minimal WIMPs up to thermal targets



Karri Folan DiPetrillo

#### Definitive observation & characterization would require a multi-TeV scale collider





# Why collide muons?

### Break the traditional paradigm of larger and larger e+e- and hadron colliders massive fundamental particles = compact, power, and cost-efficient









### Two colliders in one



Karri Folan DiPetrillo

#### Energy reach & precision electroweak physics in same machine







### Sensitivity to new physics

#### More complicated than 10 TeV $\mu\mu \sim 100$ TeV pp





 $m_L \sim \sqrt{s_{\mu\mu}/2}$ 







### Sensitivity to new physics

### Example of Direct reach Supersymmetry

MuC: pair-production up to  $\sqrt{s/2}$ FCC-hh: better for stops (color charge) But, most realistic models have TeV scale sleptons/electroweakinos





## Sensitivity to new physics

### Example of Indirect Reach: Higgs Compositeness

Diboson & di-fermion final states MuC: sensitivity scales with  $\sqrt{s}$ FCC-hh: lower effective parton luminosity e+e-: negligible effects visible

Karri Folan DiPetrillo

#### 2303.08533





### Electroweak precision

#### $\geq 10^7$ single higgs events $\rightarrow$ competitive with e+e- Higgs Factories ~10k di-higgs events $\rightarrow$ self-coupling competitive with 100 TeV pp



| <i>к</i> -0        | HL- | LHeC | HE- | LHC  |             | ILC  |           |            | CLIC | ;    | CEPC | FC   | C-ee      | FCC-ee/ | $\mu^+\mu^-$ |
|--------------------|-----|------|-----|------|-------------|------|-----------|------------|------|------|------|------|-----------|---------|--------------|
| fit                | LHC |      | S2  | S2'  | 250         | 500  | 1000      | 380        | 1500 | 3000 |      | 240  | 365       | eh/hh   | 10000        |
| $\kappa_W$         | 1.7 | 0.75 | 1.4 | 0.98 | 1.8         | 0.29 | 0.24      | 0.86       | 0.16 | 0.11 | 1.3  | 1.3  | 0.43      | 0.14    | 0.11         |
| $\kappa_Z$         | 1.5 | 1.2  | 1.3 | 0.9  | 0.29        | 0.23 | 0.22      | 0.5        | 0.26 | 0.23 | 0.14 | 0.20 | 0.17      | 0.12    | 0.35         |
| $\kappa_g$         | 2.3 | 3.6  | 1.9 | 1.2  | 2.3         | 0.97 | 0.66      | 2.5        | 1.3  | 0.9  | 1.5  | 1.7  | 1.0       | 0.49    | 0.45         |
| $\kappa_\gamma$    | 1.9 | 7.6  | 1.6 | 1.2  | 6.7         | 3.4  | 1.9       | 98*        | 5.0  | 2.2  | 3.7  | 4.7  | 3.9       | 0.29    | 0.84         |
| $\kappa_{Z\gamma}$ | 10. | -    | 5.7 | 3.8  | 99 <b>*</b> | 86*  | $85\star$ | $120\star$ | 15   | 6.9  | 8.2  | 81*  | $75\star$ | 0.69    | 5.5          |
| $\kappa_c$         | -   | 4.1  | -   | -    | 2.5         | 1.3  | 0.9       | 4.3        | 1.8  | 1.4  | 2.2  | 1.8  | 1.3       | 0.95    | 1.8          |
| $\kappa_t$         | 3.3 | -    | 2.8 | 1.7  | —           | 6.9  | 1.6       | —          | —    | 2.7  | -    | —    | -         | 1.0     | 1.4          |
| $\kappa_b$         | 3.6 | 2.1  | 3.2 | 2.3  | 1.8         | 0.58 | 0.48      | 1.9        | 0.46 | 0.37 | 1.2  | 1.3  | 0.67      | 0.43    | 0.24         |
| $\kappa_{\mu}$     | 4.6 | —    | 2.5 | 1.7  | 15          | 9.4  | 6.2       | $320\star$ | 13   | 5.8  | 8.9  | 10   | 8.9       | 0.41    | 2.9          |
| $\kappa_{	au}$     | 1.9 | 3.3  | 1.5 | 1.1  | 1.9         | 0.70 | 0.57      | 3.0        | 1.3  | 0.88 | 1.3  | 1.4  | 0.73      | 0.44    | 0.59         |

O(100) GeV scale SM physics

foward muons/neutrinos

Karri Folan DiPetrillo

#### And we can test *origin* of deviations!



# The Challenge

#### Muon lifetime $\tau$ =2.2 µs

Need to produce, cool, accelerate, and collide muons before they decay



Karri Folan DiPetrillo

# Can we build it?





Reality: recent progress in design and technology put a muon collider on a 20 year "technically limited" timeline!

Karri Folan DiPetrillo

#### 2209.01318



## Can we do physics?

#### Baseline Detector for 3 TeV was a major outcome of IMCC/Snowmass

#### Beam Induced Background with FLUKA

#### Full simulation physics studies

### Rest of talk: what we've learned and next steps

Karri Folan DiPetrillo

#### 2303.08533





### **Collision environment**

### Depends on energy, physics goals, and cross-sections Goal: measure di-higgs cross-section (few fb) with few % uncertainty



| = 1 and maximize $N_{\mu}$ per bunch      | ~2.10 <sup>12</sup> Nµ |
|-------------------------------------------|------------------------|
| ze circumference, maximize f              | 30 kHz                 |
| ze $\sigma_x \sigma_y$ beam size, aim for | ~O(10) µm              |
| ct muons every βγτ                        | 100 ms                 |
| s w/in 20 m of detector                   | 107                    |



# Unique need: Tungsten Nozzles

# Suppress high energy component of <u>beam</u> induced background



Tradeoff: increase in low energy neutrons









### Inside the detector

### Compared to HL-LHC

Up to ~10 x hit density

~1/1000 event rate

Similar dose & fluence

100 TeV pp ~3 orders of magnitude worse ~10<sup>18</sup> MeV-neq /cm<sup>2</sup>



Muon Co HL-LH

|               | Maximum | Dose (Mrad) | Maximum Fluence (1 MeV-neq/cm <sup>2</sup> ) |           |  |  |
|---------------|---------|-------------|----------------------------------------------|-----------|--|--|
|               | R=22 mm | R=1500 mm   | R=22 mm                                      | R=1500 mm |  |  |
| ollider       | 10      | 0.1         | $10^{15}$                                    | $10^{14}$ |  |  |
| $\mathrm{HC}$ | 100     | 0.1         | $10^{15}$                                    | $10^{13}$ |  |  |



### Background properties

### With standard nozzle ~10<sup>8</sup> low momentum particles per event But this background looks very different from signal!





# Technology needs

| Detector reference                                                                                 | Hit density [mm <sup>-2</sup> ] |           |  |  |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------|-----------|--|--|--|--|
|                                                                                                    | MCD                             | ATLAS ITk |  |  |  |  |
| Pixel Layer 0                                                                                      | 3.68                            | 0.643     |  |  |  |  |
| Pixel Layer 1                                                                                      | 0.51                            | 0.022     |  |  |  |  |
| →25 x 25 µm <sup>2</sup> with 30 ps timing<br>Challenges: front-end power<br>consumption & readout |                                 |           |  |  |  |  |

Karri Folan DiPetrillo

### Beam background primarily a challenge for the pixels & electromagnetic calorimeter

Similar to HL-LHC

#### Ambient energy 50 GeV/unit area

 $\rightarrow$  Silicon+Tungsten 5x5 mm<sup>2</sup> cells Timing resolution (~100 ps) Longitudinal segmentation

Room for new ideas!



# Work in progress: 10 TeV design

Need to grow the detector

Solenoid: Higher B-field & inner radius technically challenging

$$E_{\text{stored}} = \frac{B^2}{2\mu_0} \pi R^2 L$$

Need to reestablish expertise to build CMSstyle magnets!

Karri Folan DiPetrillo

**Detector Magnet Workshop** Summary by A. Bersani







# Work in progress: Machine detector interface

### Beam induced background highly dependent on nozzle configuration Systematic optimization in progress!



Karri Folan DiPetrillo







### Work in progress: Map back to physics



Separate ZZ and WW fusion Reduce backgrounds Br( $h \rightarrow invisible$ ) via  $m_{miss}$  $\Gamma_h$  via inclusive rate

M. Forslund, P Meade M. Ruhdorfer, E. Salvioni, A. Wulzer P. Li, Z. Liu, K.F. Lyu

Karri Folan DiPetrillo

### eg. to fully unlock higgs precision, is forward muon tagging possible?



 $\eta_{
m max}$ 

23

20%15%10%5%

30% 25%

35%

40%

## Work in progress: Ideas for physics along the way

Straight sections = perfect neutrino beam Equal numbers of e/µ (anti-)neutrinos Precisely known energy spectra & intensity



Synergies with charged lepton flavor violation experiments

#### Karri Folan DiPetrillo

#### Low mass dark matter (sector) searches





### The takeaway

#### Baseline detector design & full simulation studies demonstrate we can do physics With work in progress we can likely do even better :)

Higgs self-coupling



Karri Folan DiPetrillo

WIMPs/Disappearing track







# Cue the excitement!

- Positive outcomes from latest European Strategy & US Planning processes
- Formation of International Muon Collider Collaboration (IMCC)
- "MuCol" Project Funded by EU
- US Muon Collider Collaboration forming soon
- Many dedicated meetings, ulletworkshops, and articles







particle accelerato ept emerges. Call it physicist

Karri Folan DiPetrillo



#### International UON Collider Collaboration





Draft Pathways to Innovation and Discovery in Particle Physics



As part of this initiative, we recommend **targeted collider R&D** to establish the feasibility of a **10 TeV pCM muon collider**. A key milestone on this path is to design a muon collider demonstrator facility. If favorably reviewed by the collider panel, such a facility would open the door to building facilities at Fermilab that test muon collider design elements while producing exceptionally bright muon and neutrino beams. By taking up this challenge, the US blazes a trail toward a new future by advancing critical R&D that can benefit multiple science drivers and ultimately bring an unparalleled global facility to US soil.

# Conclusions

- Strong physics case for 10 TeV scale
- Strong case for colliding muons
- "No show stoppers identified"
- More work is needed & in progress

Karri Folan DiPetrillo

#### Do the homework & decide for yourself! <u>Collider Implementation Task Force</u> <u>Towards a Muon Collider</u>

