Physics at a Higgs factory PASCOS 2024 11 July 2024

Paolo Giacomelli INFN Bologna

These projects have received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreements No. 101004761 (AIDAinnova), 101057511 (EURO-LABS).

Outline

• The physics landscape

- The physics landscape
- Why we need a new collider

- The physics landscape
- Why we need a new collider
- Higgs factories

- The physics landscape
- Why we need a new collider
- Higgs factories
 - Circular colliders vs. Linear colliders

- The physics landscape
- Why we need a new collider
- Higgs factories
 - Circular colliders vs. Linear colliders
- Physics performances

- The physics landscape
- Why we need a new collider
- Higgs factories
 - Circular colliders vs. Linear colliders
- Physics performances
- Detector requirements

- The physics landscape
- Why we need a new collider
- Higgs factories
 - Circular colliders vs. Linear colliders
- Physics performances
- Detector requirements
- A detector concept for an electron circular collider: IDEA

- The physics landscape
- Why we need a new collider
- Higgs factories
 - Circular colliders vs. Linear colliders
- Physics performances
- Detector requirements
- A detector concept for an electron circular collider: IDEA
- Conclusions

- The physics landscape
- Why we need a new collider
- Higgs factories
 - Circular colliders vs. Linear colliders
- Physics performances
- Detector requirements
- A detector concept for an electron circular collider: IDEA
- Conclusions

Disclaimer

To prepare these slides I used content from many friends and colleagues, whom I wholeheartedly wish to thank. Any mistake or misinterpretation is entirely my fault!

Physics at a Higgs factory - Paolo Giacomelli

2

11/07/2024

• The Higgs discovery has completed the particle spectrum predicted by the Standard Model

- The Higgs discovery has completed the particle spectrum predicted by the Standard Model
- The SM looks like a complete and consistent theory

- The Higgs discovery has completed the particle spectrum predicted by the Standard Model
- The SM looks like a complete and consistent theory
- It describes all observed collider phenomena (except neutrino
- masses)

Ŋ

P

0

S

ТТТ 2.4 MeV .3 GeV 104 MeV 4.8 MeV 4.2 GeV GeV <2.2 eV <0.2 MeV <16 MeV BO Leptons 80 GeV 0.5 MeV .8 GeV 16 MeV 126 GeV e Η

- The Higgs discovery has completed the particle spectrum predicted by the Standard Model
- The SM looks like a complete and consistent theory
- It describes all observed collider phenomena (except neutrino masses)

Quarks

We are at an important point in Particle Physics

However there are still many unsolved questions:

Ŋ

C

0

Ŋ

ТТТ 2.4 MeV Gev 104 MeV 4.8 MeV 4.2 GeV GeV <2.2 eV <0.2 MeV <16 MeV BO Leptons 80 GeV 0.5 MeV_ .8 GeV 16 MeV 126 GeV e Η

- The Higgs discovery has completed the particle spectrum predicted by the Standard Model
- The SM looks like a complete and consistent theory
- It describes all observed collider phenomena (except neutrino masses)

However there are still many unsolved questions:

• Dark Matter

Quarks

Ŋ

P

0

ТТТ 2.4 MeV Quarks 4.8 MeV 104 MeV 4.2 GeV GeV <2.2 eV <0.2 MeV <16 MeV BO Leptons 80 GeV 0.5 MeV_ .8 GeV 16 MeV 126 GeV e Η

- The Higgs discovery has completed the particle spectrum predicted by the Standard Model
- The SM looks like a complete and consistent theory
- It describes all observed collider phenomena (except neutrino masses)

However there are still many unsolved questions:

- Dark Matter
- Neutrino masses

Ŋ

P

0

ТТТ 2.4 MeV 4.8 MeV 104 MeV 4.2 GeV GeV <2.2 eV <0.2 MeV <16 MeV BO Leptons 80 GeV 0.5 MeV_ 16 MeV .8 GeV 126 GeV e Η

- The Higgs discovery has completed the particle spectrum predicted by the Standard Model
- The SM looks like a complete and consistent theory
- It describes all observed collider phenomena (except neutrino) masses)

However there are still many unsolved questions:

- Dark Matter
- Neutrino masses
- Matter-antimatter asymmetry

Quarks

Ŋ

C0

Ŋ

ТТТ 2.4 MeV 4.8 MeV 104 MeV 4.2 GeV GeV <2.2 eV <0.2 MeV <16 MeV BO Leptons 80 GeV 0.5 MeV .8 GeV 16 MeV 126 GeV e Η

- The Higgs discovery has completed the particle spectrum predicted by the Standard Model
- The SM looks like a complete and consistent theory
- It describes all observed collider phenomena (except neutrino masses)

However there are still many unsolved questions:

- Dark Matter
- Neutrino masses
- Matter-antimatter asymmetry
- Hierarchy problem

Quarks

Ŋ

C0

Ŋ

ТТТ 2.4 MeV Quarks 4.8 MeV 104 MeV 4.2 GeV GeV <2.2 eV <0.2 MeV <16 MeV BO Leptons 80 GeV 0.5 MeV .8 GeV 16 MeV 126 GeV e Η

- The Higgs discovery has completed the particle spectrum predicted by the Standard Model
- The SM looks like a complete and consistent theory
- It describes all observed collider phenomena (except neutrino masses)

However there are still many unsolved questions:

- Dark Matter
- Neutrino masses
- Matter-antimatter asymmetry
- Hierarchy problem
- •etc.

The take-home message from the LHC so far: this universe is very SM-like.

Where do we stand...

11/07/2024

FUTURE

CIRCULAR

COLLIDER

No significant deviation from SM with 140 fb⁻¹ of pp collisions (not promising for BSM at HL-LHC)

I. Vivarelli

4

F-2022-070
017) 117
017) 117
017) 117
09529
023) 141
014) 3109
014) 3109
023) 138
IF-2023-026
017) 531
2006 (2014)
01518
018) 63
64 (2016)
2-159 (2012)
11379
023) 028
016) 6
016) 6
019) 884
4 (2016)
4 (2016) 13) 112001 014) 212001
14 (2016) 13) 112001 014) 212001 019) 535
14 (2016) 13) 112001 014) 212001 019) 535 2004 (2016)
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 VF-2023-062
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 IF-2023-062 18) 032005
4 (2016) 13) 112001 14) 212001 019) 535 2004 (2016) 012) 2173 VF-2023-062 18) 032005 99 (2017) 29 (2017)
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 NF-2023-062 18) 032005 99 (2017) 28 (2013) 014) 311
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 NF-2023-062 18) 032005 99 (2017) 28 (2013) 014) 311 023) 191
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 WF-2023-062 18) 032005 09 (2017) 28 (2013) 014) 311 023) 191 016) 228-246
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 WF-2023-062 18) 032005 09 (2017) 28 (2013) 014) 311 023) 191 016) 228-246 WF-2023-019
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 NF-2023-062 18) 032005 39 (2017) 28 (2013) 014) 311 023) 191 016) 228-246 NF-2023-019 72 (2015)
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 NF-2023-062 18) 032005 39 (2017) 28 (2013) 014) 311 023) 191 016) 228-246 NF-2023-019 72 (2015) NF-2023-065
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 IF-2023-062 18) 032005 99 (2017) 28 (2013) 014) 311 023) 191 016) 228-246 IF-2023-019 72 (2015) IF-2023-065 72 (2015)
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 WF-2023-062 18) 032005 99 (2017) 28 (2013) 114) 311 023) 191 016) 228-246 WF-2023-019 72 (2015) WF-2023-065 72 (2015) 022) 061803
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 WF-2023-062 18) 032005 99 (2017) 28 (2013) 014) 311 023) 191 016) 228-246 WF-2023-019 72 (2015) WF-2023-065 72 (2015) 022) 061803 019) 134913 023 129 023 129 024 129 025
4 (2016) 13) 112001 014) 212001 019) 535 2004 (2016) 012) 2173 WF-2023-062 18) 032005 09 (2017) 28 (2013) 014) 311 023) 191 016) 228-246 WF-2023-019 72 (2015) WF-2023-065 72 (2015) 022) 061803 019) 134913 023) 496

We are in an interesting situation

- No experimental hint to the origin of these observed phenomena
- No clear theoretical hint to indicate the best direction to go

We have no clear energy scale for new physics We don't know its coupling strength to the SM particles

- Next facility must be versatile
 - With a reach as broad as possible

collider offers the **best** solution

More Sensitivity, more Precision, more ENERGY

• A high precision, high intensity lepton collider, later followed by a high energy hadron

FUTURE CIRCULAR COLLIDER The physics we need

FUTURE FCC integrated program CIRCULAR COLLIDER

comprehensive long-term program maximizing physics opportunities

- stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & top factory at the highest luminosities
- highly synergetic and complementary programme boosting the physics reach of both colliders

stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, pp & AA collisions; e-h option common civil engineering and technical infrastructures, building on and reusing CERN's existing infrastructure FCC integrated project allows the start of a new, major facility at CERN within a few years of the end of HL-LHC

FUTURE CIRCULAR COLLIDER **FCC-ee main parameters**

Parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1270	137	26.7	4.9
number bunches/beam	11200	1780	440	60
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.1/0	2.1/9.4
long. damping time [turns]	1158	215	64	18
horizontal beta* [m]	0.11	0.2	0.24	1.0
vertical beta* [mm]	0.7	1.0	1.0	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59
vertical geom. emittance [pm]	1.9	2.2	1.4	1.6
horizontal rms IP spot size [μm]	9	21	13	40
vertical rms IP spot size [nm]	36	47	40	51
beam-beam parameter ξ_x / ξ_y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134
rms bunch length with SR / BS [mm]	5.6 / 15.5	3.5 / <mark>5.4</mark>	3.4 / 4.7	1.8 / <mark>2.2</mark>
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	140	20	5.0	1.25
total integrated luminosity / IP / year [ab-1/yr]	17	2.4	0.6	0.15
beam lifetime rad Bhabha + BS [min]	15	12	12	11
	4 years 5 x 10 ¹² Z LEP x 10 ⁵	2 years > 10 ⁸ WW LEP x 10 ⁴	3 years 2 x 10 ⁶ H	5 years 2 x 10 ⁶ tt pairs

□ x 10-50 improvements on all EW observables

up to x 10 improvement on Higgs coupling (model-indep.) measurements over HL-LHC

x10 Belle II statistics for b, c, τ

indirect discovery potential up to ~ 70 TeV

direct discovery potential for feebly-interacting particles over 5-100 GeV mass range Physics at a Higgs factory - Paolo Giacomelli 11/07/2024

Design and parameters dominated by the choice to allow for 50 MW synchrotron radiation per beam.

Up to 4 interaction points \rightarrow robustness, statistics, possibility of specialised detectors to maximise physics output

F. Gianotti

FUTURE CIRCULAR **FCC-ee main parameters** COLLIDER

Parameter	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1270	137	26.7	4.9
number bunches/beam	11200	1780	440	60
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.1/0	2.1/9.4
long. damping time [turns]	1158	215	64	18

horizont The whole LEP1 programme in 2 minutes!! vertical I horizont

vertical geom. ennuance (pm)				
horizontal rms IP spot size [μm]	9	21	13	40
vertical rms IP spot size [nm]	36	47	40	51
beam-beam parameter ξ _x / ξ _y	0.002/0 J973	0.013/0.128	0.010/0.088	0.073/0.134
rms bunch length with SR / BS [mm]	5.6 / ,5.5	3.5 / <mark>5.4</mark>	3.4 / 4.7	1.8 / 2.2
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	140	20	5.0	1.25
total integrated luminosity / IP / year [ab-1/yr]	17	2.4	0.6	0.15
beam lifetime rad Bhabha + BS [min]	15	12	12	11
	4 years 5 x 10 ¹² Z LEP x 10 ⁵	2 years > 10 ⁸ WW LEP x 10 ⁴	3 years 2 x 10 ⁶ H	5 years 2 x 10 ⁶ tt pairs

4 years
5 x 10 ¹² Z
LEP x 10 ⁵

- □ x 10-50 improvements on all EW observables
- up to x 10 improvement on Higgs coupling (model-indep.) measurements over HL-LHC
- x10 Belle II statistics for b, c, τ
- indirect discovery potential up to ~ 70 TeV

direct discovery potential for feebly-interacting particles over 5-100 GeV mass range Physics at a Higgs factory - Paolo Giacomelli 11/07/2024

Design and parameters dominated by the choice to allow for 50 MW synchrotron radiation per beam.

Up to 4 interaction points \rightarrow robustness, statistics, possibility of specialised detectors to maximise physics output

FUTURE CIRCULAR COLLIDER **Comparison of Higgs factories: Circular vs. Linear**

CEPC versus FCC-ee

- Earlier data: collisions expected in 2030s (vs. ~ 2040s)
- Large tunnel cross section (ee & pp coexistence) \bigcirc
- Lower construction cost \bigcirc
- Green field: Lab, complete infrastructure to be built \bigcirc

11/07/2024

Circular versus Linear Colliders Higher luminosity / precision for Higgs & Z

 \bigcirc Potential upgrade for pp collider \bigcirc

FUTURE Why circular is better than linear... CIRCULAR COLLIDER

Precise and continuous \sqrt{s} , \sqrt{s} spread, boost determination

Both with resonant depolarisation (RDP) and with collision events in up to four detectors Essential for precision measurements

Optimal energy range for SM particles Serve up to & interaction points Sharpen and challenge our knowledge of already existing physics Essential redundancy for precision measurements ZH tt Enhance the community it i CCICERN clients FCC-ee (2 IPs) (~CEPC 50 MW) FCC-ee (4 IPs) (Lumi × 1.7) ILC (TDR, upgrades) (~C3) CLIC (CDR, 2022) FCC-ee HZ (240 GeV) tt (350 GeV) tt (365 GeV) CLIC ILC (250 GeV) 350 250 300 400 Motivates the competition s [GeV] Luminosity is the name of the game In situ only

11/07/2024

FCC-ee explore and discover

EXPLORE INDIRECTLY the 10-100 TeV energy scale with precision measurements

- From the correlated properties of the Z, b, c, τ , W, Higgs, and top particles
- Up to 20-50-fold improved precision on ALL electroweak observables (EWPO) • Up to 10 × more precise and model-independent Higgs couplings (width, mass)
- measurements
- DISCOVER that the Standard Model does not fit
- DISCOVER a violation of flavour conservation/universality
- DISCOVER dark matter, e.g., as invisible decays of Higgs or Z
- **DISCOVER DIRECTLY** elusive (aka feebly-coupled) particles
 - in the 5-100 GeV mass range, such as right-handed neutrino

From data collected in a lineshape energy scan:

- **Z mass** (key for jump in precision for ewk fits)
- Z width (jump in sensitivity to ewk rad corr)
- \mathbf{R}_{I} = hadronic/leptonic width ($\alpha_{s}(m_{z}^{2})$, lepton couplings)
- peak cross section (invisible width, N_v)
- $A_{FB}(\mu\mu)$ (sin² θ_{eff} , $\alpha_{QED}(m_Z^2)$, lepton couplings)

 $|5x10^{12} e^+e^- \rightarrow Z|$

10¹² bb/cc, 1.7x10¹¹ ττ

- R_b, R_c, A_{FB}(bb), A_{FB}(cc) (quark couplings)
- CKM matrix
- CP violation in neutral B mesons
- Flavour anomalies
- Tau polarization (sin² θ_{eff} , lepton couplings, $\alpha_{QED}(m_Z^2)$)
- much more...

0.8 0.6 $-B^+ \rightarrow (K_s \pi^0)_{D} K^+$ 0.4 loose mass cut K_s mass ± 5 MeV 0.2 K_s mass ± 2.5 MeV 500 1000 1500 ň

Various IDEA configuration

R. Tenchini, P. Azzi

14

FUTURE CIRCULAR COLLIDER Flavour physics with Tera-Z run

Particle production	(10^9) B^6	0 B^{-}	B^0_s	Λ_b	$c\overline{c}$	$\tau^{-}\tau^{+}$	
Belle II	27.	5 27.5	n/a	n/a	65	45	FC
FCC-ee	40	0 400	100	100	600	170	
Decay mode/Experiment	Belle II (50/ab)	LHCb Run	I LHO	Cb Upgr.	(50/fb)	FCC-ee	
EW/H penguins							
$B^0 \rightarrow K^*(892)e^+e^-$	~ 2000	~ 150		~ 5000)	~ 200000	
$\mathcal{B}(B^0 \to K^*(892)\tau^+\tau^-)$	~ 10	—		_		~ 1000)
$B_s \to \mu^+ \mu^-$	n/a	~ 15		~ 500		~ 800	
$B^0 \rightarrow \mu^+ \mu^-$	~ 5	_		~ 50		~ 100	
$\mathcal{B}(B_s \to \tau^+ \tau^-)$							
Leptonic decays							
$B^+ \to \mu^+ \nu_{mu}$	5%	_		-		3%	
$B^+ \to \tau^+ \nu_{tau}$	7%	_		_		2%	
$B_c^+ \to \tau^+ \nu_{tau}$	n/a	—		—		5%	
CP / hadronic decays							
$B^0 \to J/\Psi K_S (\sigma_{\sin(2\phi_d)})$	$\sim 2. * 10^6 (0.008)$) 41500 (0.04	$(1) \sim$	$0.8\cdot 10^6$	(0.01)	$\sim 35\cdot 10^6$ (0.0	06)
$B_s \to D_s^{\pm} K^{\mp}$	n/a	6000		~ 20000	00	$\sim 30\cdot 10^6$,
$B_s(B^0) \xrightarrow{s} J/\Psi \phi \ (\sigma_{\phi_s} \text{ rad})$	n/a	96000 (0.04	9) ~	$\sim 2.10^{6} (0.1)^{-2}$.008)	$16 \cdot 10^6 (0.00)$	3)

Out of reach at LHCb/Belle

= 10 x Bellell

sted b's/ τ 's FCC-ee

kes possible pological rec. the decays miss. energy

CIRCULAR COLLIDER Indirect BSM sensitivity from EWPO

- Target: reduce systematic uncertainties to the level of statistical ones
- Exquisite \sqrt{s} precision (100keV@Z, 300keV@WW)
- ~50 times better precision than LEP on EW precision observables

	Need	TH results	to fully ex	ploit Tera-	Z
Quantity	$\begin{array}{c} \mathrm{Current} \\ \mathrm{precision} \end{array}$	FCC-ee stat. (syst.) precision	Required theory input	Available calc. in 2019	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$m_{ m Z} \ \Gamma_{ m Z} \ \sin^2 heta_{ m eff}^\ell$	$\begin{array}{l} 2.1{\rm MeV}\\ 2.3{\rm MeV}\\ 1.6{\times}10^{-4} \end{array}$	0.004 (0.1) MeV 0.004 (0.025) MeV $2(2.4) \times 10^{-6}$	non-resonant $e^+e^- \rightarrow f\bar{f},$ initial-state radiation (ISR)	NLO, ISR logarithms up to 6th order	NNLO for $e^+e^- \rightarrow f\bar{f}$
m_W	$12{ m MeV}$	0.25 (0.3) MeV	lineshape of $e^+e^- \rightarrow WW$ near threshold	NLO (ee \rightarrow 4f or EFT frame-work)	NNLO for ee \rightarrow WW, W \rightarrow ff in EFT setup
HZZ coupling		0.2%	cross-sect. for $e^+e^- \rightarrow ZH$	NLO + NNLO QCD	NNLO electroweak
$m_{ m top}$	100 MeV	17 MeV	threshold scan $e^+e^- \rightarrow t\bar{t}$	N ³ LO QCD, NNLO EW, resummations up to NNLL	Matching fixed orders with resummations, merging with MC, α_s (input)

[†]The listed needed theory calculations constitute a minimum baseline; additional partial higher-order contributions may also be required.

Indirect sensitivity to 70TeV-scale sector connected to EW/Higgs

P. Azzi

16

	-				
		F	۶Ń		
nale o	di Fi	sica	Nuclear	1	
		_	80		
			70		
;)			60		
			50		
	_		40		
			30		
		_	20		
			10		
			0		
O_{μ}					

- W mass (key for jump in precision for ewk fits)
- W width (first precise direct measurement)
- $\mathbf{R}^{W} = \Gamma_{had} / \Gamma_{lept} \left(\alpha_{s}(m_{z}^{2}) \right)$
- Γ_{e} , Γ_{μ} , Γ_{τ} (precise universality test)
- direct CKM measurements (with jet-flavor tagging)
- Triple and Quartic Gauge couplings (jump in

precision, especially for charged couplings)

From data collected around and above the WW threshold:

FUTURE CIRCULAR COLLIDER **EW precision measurements at FCC-ee**

Observable	present		FCC-ee	FCC-ee	Comment and	
	value	±	error	Stat.	Syst.	leading error
$m_{\rm Z}~({\rm keV})$	91186700	±	2200	4	100	From Z line shape scar Beam energy calibration
$\Gamma_{\rm Z}~({\rm keV})$	2495200	±	2300	4	25	From Z line shape scar Beam energy calibration
$\sin^2 heta_{ m W}^{ m eff}(imes 10^6)$	231480	±	160	2	2.4	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/lpha_{ m QED}(m m_Z^2)(imes 10^3)$	128952	±	14	3	small	From $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate
$\mathrm{R}^{\mathrm{Z}}_{\ell}~(imes 10^3)$	20767	±	25	0.06	0.2-1	Ratio of hadrons to leptons Acceptance for leptons
$lpha_{ m s}({ m m}_{ m Z}^2)~(imes 10^4)$	1196	±	30	0.1	0.4-1.6	From R_{ℓ}^2
$\sigma_{\rm had}^0 ~(\times 10^3)$ (nb)	41541	±	37	0.1	4	Peak hadronic cross-section Luminosity measurement
$N_{\nu}(\times 10^3)$	2996	±	7	0.005	1	Z peak cross-sections Luminosity measurement
$R_b (\times 10^6)$	216290	±	660	0.3	< 60	Ratio of $b\bar{b}$ to hadrons Stat. extrapol. from SLE
$A_{FB}^{b}, 0 \; (imes 10^{4})$	992	±	16	0.02	1-3	b-quark asymmetry at Z pole From jet charge
$\mathrm{A_{FB}^{pol, au}}$ (×10 ⁴)	1498	±	49	0.15	<2	au polarisation asymmetry $ au$ decay physics
au lifetime (fs)	290.3	±	0.5	0.001	0.04	Radial alignment
au mass (MeV)	1776.86	±	0.12	0.004	0.04	Momentum scale
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38	±	0.04	0.0001	0.003	e/μ /hadron separation
$m_W (MeV)$	80350	±	15	0.25	0.3	From WW threshold scar Beam energy calibration
$\Gamma_{\rm W}~({ m MeV})$	2085	±	42	1.2	0.3	From WW threshold scar Beam energy calibration
$lpha_{ m s}({ m m}_{ m W}^2)(imes 10^4)$	1010	±	270	3	\mathbf{small}	From $\mathbf{R}^{\mathbf{W}}_{\ell}$
$N_{\nu}(\times 10^3)$	2920	±	50	0.8	small	Ratio of invis. to leptonic in radiative Z returns
m_{top} (MeV)	172740	±	500	17	small	From tt threshold scar QCD errors dominate
$\Gamma_{\rm top}$ (MeV)	1410	±	190	45	small	From $t\bar{t}$ threshold scar QCD errors dominate
$\lambda_{ m top}/\lambda_{ m top}^{ m SM}$	1.2	±	0.3	0.10	small	From $t\bar{t}$ threshold scar QCD errors dominate
ttZ couplings		±	30%	$0.5 - 1.5 \ \%$	\mathbf{small}	From $\sqrt{s} = 365 \mathrm{GeV} \mathrm{rur}$

Improvement of 10-50 times compared to LEP

Physics at a Higgs factory - Paolo Giacomelli

CIRCULAR COLLIDER Higgs production at an e⁺e⁻ collider

- "Higgstrahlung" process close to threshold
- Production cross section has a maximum at near threshold ~200 fb
 - $10^{34}/\text{cm}^2/\text{s} \rightarrow 20'000 \text{ HZ events per year}$

For a Higgs of 125 GeV, a centre of mass energy of 240-250 GeV is optimal → kinematical constraint near threshold for high precision in mass, width, selection purity

Z – tagging of Higgs events

FUTURE CIRCULAR COLLIDER **Higgs production at FCC-ee**

FCC-ee 7.2 ab⁻¹@240 GeV ~2.7 ab⁻¹@365 GeV

Higgs Factory!

45000

80000

Higgs bosons from fusion process

Physics at a Higgs factory - Paolo Giacomelli

FUTURE CIRCULAR COLLIDER Higgs couplings to Z

- of the HZ coupling
 - \blacksquare Higgs events are tagged with the Z boson decays, independently of Higgs decay mode, $m_{recoil} = m_{H}$ Expected precision 0.7% on the ZH cross section

 - Using only leptonic Z decays and only a measurement at 240 GeV so far

 $\sigma(ee \rightarrow ZH) \propto g_{HZ}^2$

Recoil method provides a unique opportunity for a decay-mode independent measurement

_		

FUTURE CIRCULAR COLLIDER Higgs @ FCC-ee

- Absolute normalisation of couplings (by recommethod)
- Measurement of width (from ZH>ZZZ* and WW
- $\delta\Gamma_H\sim 1\%, \delta m_H\sim 3\,{
 m MeV}$ (resp. 25%, 30 MeV @ HL-
- Model-independent coupling determination improvement factor up to 10 compared to
- (Indirect) sensitivity to new physics up to 70 TeV (for maximally strongly coupled models)

$$(\delta \kappa_X = v^2 / f^2 \quad \& \quad m_{\rm NP} = g_{\rm NP} f)$$

Higgs programme needs Z-pole —

oil	Higgs co	Higgs coupling sensitivity					
	Coupling	HL-LHC	FCC-ee (240–365				
/>H) _			2 IPs / 4 IP				
	κ_W [%]	1.5^{*}	0.43 / 0.33				
LHC)	$\kappa_Z[\%]$	1.3^{*}	0.17 / 0.14				
n and	$\kappa_g[\%]$	2^{*}	0.90 / 0.77				
	κ_{γ} [%]	1.6^{*}	1.3 / 1.2				
LHC	$\kappa_{Z\gamma}$ [%]	10^{*}	10 / 10				
	κ_c [%]	—	1.3 / 1.1				
	κ_t [%]	3.2^{*}	3.1 / 3.1				
	κ_b [%]	2.5^{*}	$0.64 \ / \ 0.56$				
	κ_{μ} [%]	4.4^{*}	3.9 / 3.7				
	$\kappa_{ au}$ [%]	1.6^{*}	$0.66 \ / \ 0.55$				
	BR_{inv} (<%, 95% CL)	1.9^{*}	0.20 / 0.15				
	BR_{unt} (<%, 95% CL)	4*	1.0 / 0.88				

C. Grojean

FUTURE CIRCULAR COLLIDER **Top physics**

Threshold scan allows most precise measurements of top mass

- FCNC in the top sector.

•Measurements at threshold: top mass (< 20 MeV stat), width, and estimate of Yukawa coupling •Run at 365 GeV: precision measurements of top EWK couplings at ~10⁻²,10⁻³ and search for

Detector concepts fast overview

CDR

CLD

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker; ٠

FUTURE

CIRCULAR

COLLIDER

- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - $\sigma_p/p, \sigma_E/E$
 - PID ($\mathcal{O}(10 \text{ ps})$ timing and/or RICH)?
 - ٠ ...

FCC-ee CDR: https://link.springer.com/article/10.1140/epjst/e2019-900045-4

https://arxiv.org/abs/1911.12230, https://arxiv.org/abs/1905.02520

- A bit less established design
 - But still ~15y history
- Si vtx detector; ultra light drift chamber w powerful PID; compact, light coil;
- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system
- Very active community
 - campaigns, ...

IDEA

ε

-

13 m

Prototype designs, test beam

- https://pos.sissa.it/390/
- Physics at a Higgs factory Paolo Giacomelli

- A design in its infancy
- Si vtx det., ultra light drift chamber (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAL
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies •

Innovative Detector for e+e-Accelerator

New, innovative, possibly more costeffective concept

Innovative Detector for e+e- Accelerator

- New, innovative, possibly more costeffective concept
 - □ Silicon vertex detector

Innovative Detector for e+e- Accelerator

New, innovative, possibly more cost-

effective concept

- □ Silicon vertex detector
- Short-drift, ultra-light wire chamber

- New, innovative, possibly more costeffective concept □ Silicon vertex detector
 - Short-drift, ultra-light wire chamber
 - Dual-readout calorimeter

Innovative Detector for e+e- Accelerator

Innovative Detector for e+e- Accelerator

- New, innovative, possibly more costeffective concept □ Silicon vertex detector
 - Short-drift, ultra-light wire chamber
 - Dual-readout calorimeter
 - Thin and light solenoid coil inside
 - calorimeter system

Innovative Detector for e+e-Accelerator

- New, innovative, possibly more costeffective concept
 - □ Silicon vertex detector
 - Short-drift, ultra-light wire chamber
 - Dual-readout calorimeter
 - Thin and light solenoid coil inside
 - calorimeter system
 - Small magnet \Rightarrow small yoke

Innovative Detector for e+e- Accelerator

- New, innovative, possibly more costeffective concept
 - □ Silicon vertex detector
 - Short-drift, ultra-light wire chamber
 - Dual-readout calorimeter
 - Thin and light solenoid coil inside
 - calorimeter system
 - Small magnet \Rightarrow small yoke
 - \Box Muon system made of 3 layers of μ -RWELL detectors in the return yoke

Innovative Detector for e+e- Accelerator

- New, innovative, possibly more costeffective concept
 - □ Silicon vertex detector
 - Short-drift, ultra-light wire chamber
 - Dual-readout calorimeter
- Thin and light solenoid coil inside
 - calorimeter system
 - Small magnet \Rightarrow small yoke
- \Box Muon system made of 3 layers of μ -RWELL detectors in the return yoke

https://pos.sissa.it/390/

Innovative Detector for e+e- Accelerator

 New, innovative, possibly more costeffective concept

- □ Silicon vertex detector
- Short-drift, ultra-light wire chamber
- Dual-readout calorimeter
- Thin and light solenoid coil inside
 - calorimeter system
 - Small magnet \Rightarrow small yoke
- \Box Muon system made of 3 layers of μ -
 - RWELL detectors in the return yoke

https://pos.sissa.it/390/

Acknowledgments I need to thank many colleagues, in particular: F. Bedeschi

Beam pipe: R~1.2 cm

Mid-term review vertex detector overall layout

Physics at a Higgs factory - Paolo Giacomelli

CIRCULAR Vertex detector: IDEA

FUTURE CIRCULAR Vertex detector: IDEA COLLIDER

Inner Vertex detector:

Modules of 25 \times 25 μ m² pixel size

3 barrel layers at 13.7, 22.7 and 34.8 mm radius

FUTURE CIRCULAR Vertex detector: IDEA COLLIDER

Outer vertex tracker:

Modules of 50 \times 150 μ m² pixel size

- Intermediate barrel at 13 cm radius (improved reconstruction for $p_T > 40$ MeV tracks)
- Outer barrel at 31.5 cm radius
- 3 disks per side

Inner Vertex detector:

Modules of 25 \times 25 μ m² pixel size

3 barrel layers at 13.7, 22.7 and 34.8 mm radius

FUTURE CIRCULAR COLLIDER

Drift chamber

- IDEA: Extremely transparent Drift Chamber
- □ Gas: 90% He 10% iC₄H₁₀
- Radius 0.35 2.00 m
- □ Total thickness: 1.6% of X₀ at 90°
- □ All stereo wires (56448 cells, 343968 wires)
 - Tungsten wires dominant contribution
- □ 112 layers for each 15° azimuthal sector

max drift time: 350 ns

FUTURE CIRCULAR **Drift chamber** COLLIDER

- In general, tracks have rather low momenta ($p_T \leq 50$ GeV) Transparency more relevant than asymptotic resolution
- Drift chamber (gaseous tracker) advantages
 - Extremely transparent: minimal multiple scattering and secondary interactions
 - \Box Continuous tracking: reconstruction of far-detached vertices (K⁰_S, Λ , BSM, LLPs)
 - Outstanding Particle separation via dE/dx or cluster counting (dN/dx)
 - $*>3\sigma K/\pi$ separation up to ~35 GeV

Alternate Cherenkov fibers Scintillating fibers

~2m long capillaries

Newer DR calorimeter bucatini calorimeter)

Scintillation fibers

Cherenkov fibers

Physics at a Higgs factory - Paolo Giacomelli

- Measure simultaneously:
 - \succ Scintillation signal (S)
 - \succ Cherenkov signal (Q)

~2m long capillaries

Newer DR calorimeter bucatini calorimeter)

Scintillation fibers

Cherenkov fibers

FUTURE CIRCULAR COLLIDER **Dual Readout Calorimetry**

0.4 1.5 1.0 \bigcirc

Alternate Cherenkov fibers Scintillating fibers

Measure simultaneously:

- \succ Scintillation signal (S)
- \succ Cherenkov signal (Q)
- Calibrate both signals with e-

~2m long capillaries

Newer DR calorimeter bucatini calorimeter)

Scintillation fibers

Cherenkov fibers

FUTURE CIRCULAR COLLIDER **Dual Readout Calorimetry**

0.4 1.5 1.0 \bigcirc

Alternate Cherenkov fibers Scintillating fibers

- Measure simultaneously:
 - \succ Scintillation signal (S)
 - \succ Cherenkov signal (Q)
- Calibrate both signals with e-
- \clubsuit Unfold event by event f_{em} to obtain corrected energy

~2m long capillaries

Newer DR calorimeter bucatini calorimeter)

Scintillation fibers

Cherenkov fibers

FUTURE CIRCULAR COLLIDER **Dual Readout Calorimetry**

0.4 1.5 1.0

Alternate Cherenkov fibers Scintillating fibers

Measure simultaneously:

- \succ Scintillation signal (S)
- \succ Cherenkov signal (Q)
- Calibrate both signals with e-
- \clubsuit Unfold event by event f_{em} to obtain corrected energy

$$S = E [f_{em} + (h/e)_{S}(1 - f_{em})]$$

$$C = E [f_{em} + (h/e)_{C}(1 - f_{em})]$$

$$E = \frac{S - \chi C}{1 - \chi} \quad \text{with:} \quad \chi = \frac{1 - (h/e)_{S}}{1 - (h/e)_{C}}$$

~2m long capillaries

Newer DR calorimeter bucatini calorimeter)

Scintillation fibers

Cherenkov fibers

Transverse and longitudinal segmentations optimized for particle identification and particle flow algorithms

M. Lucchini

Preshower and muon detector

Preshower Detector

High resolution after the magnet to improve π^{\pm}/e^{\pm} and 2γ separation

Efficiency > 98% Space Resolution < 100 μ m Mass production Optimization of FEE channels/cost

Endcap Preshower

Similar design for the Muon detector

Similar design for the Muon detector

Muon Detector

Identify muons and search for LLPs

Efficiency > 98% Space Resolution < 400 μ m Mass production **Optimization of FEE channels/cost**

Detector technology: µ-RWELL

50x50 cm² 2D tiles to cover more than 1650 m²

Preshower

pitch = 0.4 mmFEE capacitance = 70 pF 1.3 million channels

Muon

pitch = 1.2 mm

Physics at a Higgs factory - Paolo Giacomelli

FEE capacitance = 220 pF 5 million channels

FUTURE CIRCULAR COLLIDER **CONCLUSIONS**

FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings

CIRCULAR COLLIDER **COLLIDER**

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - Fantastic prospects also for flavor, Top and BSM physics

FUTURE CIRCULAR COLLIDER

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - Fantastic prospects also for flavor, Top and BSM physics
 - FCC-ee could be also be a discovery machine

CIRCULAR COLLIDER **CONCLUSIONS**

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - Fantastic prospects also for flavor, Top and BSM physics
 - FCC-ee could be also be a discovery machine
- Detector requirements are stringent

FUTURE CIRCULAR COLLIDER COLLIDER

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - Fantastic prospects also for flavor, Top and BSM physics
 - FCC-ee could be also be a discovery machine
- Detector requirements are stringent
 - Detector concepts exist, matching the requirement, more R&D is however needed

FUTURE CIRCULAR COLLIDER CONCLUSIONS

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - Fantastic prospects also for flavor, Top and BSM physics
 - FCC-ee could be also be a discovery machine
- Detector requirements are stringent
 - Detector concepts exist, matching the requirement, more R&D is however needed
 The IDEA detector concept could be an excellent choice for one of the FCC-ee
 - The IDEA detector concept coul
 IPs

FUTURE CIRCULAR COLLIDER CONCLUSIONS

- FCC-ee will be a fascinating machine, allowing to achieve unprecedented precision on EW measurements and Higgs couplings
 - Fantastic prospects also for flavor, Top and BSM physics
 - FCC-ee could be also be a discovery machine
- Detector requirements are stringent
 - Detector concepts exist, matching the requirement, more R&D is however needed
 The IDEA detector concept could be an excellent choice for one of the FCC-ee
 - The IDEA detector concept could IPs
- We are living in very interesting times, especially for our young collaborators

Conclusions

- **FCC-ee** will be a fascinating machine, allowing to achieve unprecedented precision Ş on EW measurements and Higgs couplings
 - Fantastic prospects also for **flavor**, **Top** and **BSM physics** Ş
 - FCC-ee could be also be a discovery machine
- **Detector requirements** are stringent Ş
 - Detector concepts exist, matching the requirement, more R&D is however needed Ģ The IDEA detector concept could be an excellent choice for one of the FCC-ee
 - IPs
- We are living in very interesting times, especially for our young collaborators
- Lots of possibilities for many colleagues, from all over the world, to participate and contribute to all these developments!!

Physics at a Higgs factory - Paolo Giacomelli