Recent T2K Results on Neutrino Cross-Sections

- Alexander Izmaylov for the T2K Collaboration
 - INR RAS
- 29th International Symposium on Particles, String and Cosmology (PASCOS 2024) Quy Nhon, Vietnam, 7-13 July, 2024.

The T2K Experiment

- Hunting accelerator neutrinos since 2010
- Precise measurements of
- Cao on oscillation studies

T2K Near Detector Complex

[1] C.Wret talk at Nulnt2024

- Multiple detectors at different off-axis angles
- Potential to probe different E_v spectra of the same neutrino beam
- Potential to disentangle flux and neutrino interactions impacts
- Test models using different fluxes

- T2K @ sub-GeV v energy
- Peaks at ~0.6 GeV with 2.5° off-axis
- Less energetic than other actors in the field [1]
- T2K can run with enhanced
 - v_µ-mode beam
 - $\bar{\nu}_{\mu}$ -mode beam

Neutrino XSec Impacts on Oscillation Analysis (OA)

- XSec studies have direct impact on PMNS oscillations measurements and CPV search
- Systematics in current longbaseline experiments
 ~dominated by neutrino interaction uncertainties
- Not a major issue for current projects as CPV is stat. limited
- Need to further improve the constrains for high-precision measurements in Hyper-K and DUNE era

 $\frac{N_{events}^{far}(\vec{x})}{N_{events}^{near}(\vec{x})} = \frac{\sigma(E_v, \vec{x}) \otimes \Phi^{far}(E_v) \otimes D^{far}(\vec{x}) \otimes P_{osc}(E_v)}{\sigma(E_v, \vec{x}) \otimes \Phi^{near}(E_v) \otimes D^{near}(\vec{x})}$

Error source (%)	v mode SK e-like ring	anti-v mode, SK e-like ring	ratio e v/anti-v
Flux	2.8	3.0	2.2
v xsec (ND tuned)	3.8	3.5	2.4
v sec (all)	4.8	4.8	4.4
Flux + xsec (ND tuned)	2.9	2.7	2.3
Flux + xsec (all)	4.1	4.3	4.4
Super-K	2.7	5.1	4.0
Total	4.9	6.7	5.9

* From T2K plenary talk by Son Cao on oscillation analysis

Measuring Neutrino Interactions

- Complex nuclei as targets in detectors: scintillators (CH), H₂O, liquid Ar etc
- Initial reactions on nucleons convoluted with nuclear effects
- Define signal based on final state reconstructed observables in detectors
- Generally split by
 - v flavour $\rightarrow \mu/e$ lepton
 - Interaction mode: CC/NC
 - $\bullet\,\pi$ and proton multiplicities

 $\frac{d\sigma}{dx_i dy_j} = \frac{N_{ij}^{signal}}{\varepsilon_{ij} \Phi N_{nucleons}^{FV}} \times \frac{1}{\Delta x_i \Delta y_j}$

- Extract cross-section in true variables` bins
- Unfolding detector effects, integrated flux and efficiency correction using binned-likelihood template fitting [2]

[2] A.Cudd et al talk NuSTEC CEWG Seminar; and e.g. T2K Collab. Phys.Rev.D 108 (2023) 11, 112009

Outline

- Recent highlights from T2K cross-section studies
 - **1.Published: Near-detector on/off-axis joint measurement of v**_μCC0π[±]
 - Preliminary:

2.Intermediate detector WAGASCI/BabyMIND – $v_{\mu}CC0\pi^{\pm}$

3.T2K off-axis ND280 — $v_eCC\pi^+$

4.T2K off-axis ND280 – NC1 π^+

5.Work in progress: T2K off-axis ND280 v_µCC K⁺ production

 Cross-sections in different interaction channels, detector observables measured as a function of true (usually kinematic) variables

• 1D, 2D... "differential" cross-sections $\frac{d\sigma}{dp_{\mu}}, \frac{d\sigma}{d\cos\theta}$

- Ultimate goal in experiments collect a wide range of measurements over different fluxes, targets, v species, interaction products to develop and tune theoretical models
 - Further realised in "neutrino generators" simulation engines to describe neutrino interactions in detector media: NEUT [3] (primary in T2K), GENIE [4], NuWro[5] etc.

[5] Nucl. Phys. B Proc. Suppl. 229-232, 499 (2012) 6 [3] Acta Phys. Polon. B 40, 2477 (2009) [4] Nucl. Instrum. Meth. A 614, 87 (2010)

$$\frac{d\sigma}{\theta_{\mu}}, \frac{d\sigma}{dp_{p}}, \frac{d^{2}\sigma}{dp_{\mu} \cdot d\cos\theta_{\mu}} \cdots$$

1. Joint On/Off-axis v_{μ} CC0 π analysis

- Study v_{μ} CC interactions on CH w/o pions in the final state @ two detectors [6]
- 2.5° off-axis ND280
 - 0.2 T field

- FGD1/2 plastic scintillator targets + additional H₂O in FGD2
- Gaseous Ar TPCs, ECals, π⁰ module, muon-range detectors
- On-axis INGRID
 - Iron-scintillator sandwich modules for beam monitoring
 - Proton CH module for XSec
 - PID and momentum from dEdX and track length

[6] T2K Collab. Phys.Rev.D 108 (2023) 11, 112009

1. Joint On/Off-axis v_{μ} CC0 π analysis

- $\nu_{\mu} + CH \rightarrow \mu^{-} + O\pi^{\pm} + Np$
- Simultaneous measurement with two different fluxes
- 2D differential cross-sections in muon kinematics
- 6 samples for $(p_{\mu}, \cos\theta_{\mu})$
 - 5 samples in ND280 for different muon and proton topologies
 - One INGRID sample
- First time in T2K correlated energy spectra has been used in a crosssection analysis
 - Correlated resulting cross-sections
 - Reduced flux uncertainty

- Current models [7] "struggle" to describe data \rightarrow further model development and analyses
 - Tensions in on-axis, forward-going, low- to medium- momentum range
- Potential for extensions with more detectors, channels and signals

[7] Comparisons to models with NUISANCE framework. 2017 JINST 12 P01016

Results consistent with previous ND280 and INGRID measurements

2. v_{μ} CC0 π [±] in WAGASCI/BabyMIND

- Study of v interactions on CH and H₂O enriched targets
 - WAGASCI: plane and grid-like plastic scintillators in a water tank
 - Proton module with plastic scintillator
 - Baby-MIND magnetised ironscintillator planes

10

2. v_{μ} CC0 π [±] in WAGASCI/BabyMIND •On-axis •2.5 off-axis .5 off-ax

• $\nu_{\mu} + CH \rightarrow \mu^{-} + O\pi^{\pm} + X$

- Signal: a muon track and no charged pions in the final state
- 1D differential cross-sections for H₂O and CH targets in muon kinematic bins
- Phase-space restriction
 - $p_{\mu} > 300 \text{ MeV/c}$
 - θ_μ < 70°
- First physics results with the full WAGASCI/Baby-MIND setup
- No enough sensitivity to differentiate between models with the current stats
- Data-taking on-going

6^{2.5}

bld

 10^{39}

Analysis binning Momentum bins: 300, 500, 700, 900, 1100, 1500, 30000 (cosθ 0.34–1) cosθ bins: 0.34, 1.0 0.34, 0.57, 0.71, 0.91, 0.94, 0.97, 0.98, 1 (momentum 300-30000)

0-5: bins for CH target, 6-11 bins for H₂O target

	П
	Η
	٦
	4
	4
_	4
	-
	Η
	Η
-	
	٦
	٦
	Т
_	
	4
	\neg
_	\neg
	Η
	Η
	٦
_	
	1
_	
	\neg
	Η
	1

3. v_e **CC** π + Interactions

- Channel: $\nu_e CC\pi^+$ in FGD1 in v-mode beam
- $\nu_{e} + CH \rightarrow e^{-} + \pi^{+} + X$
- Contributes to appearance channel for **CP-violation search**
 - Important when reach higher statistics and reduced systematics
 - Statistically significant event excesses in far detector samples [8]
- Extends previous T2K inclusive v_e/anti-v_e CC measurement [9]
 - a) Tag TPC pions with dE/dX
 - b) Tag Michel electrons for FGD stopping pions \rightarrow recover low momentum pions

width

Events / bin

[9] T2K Collab., JHEP 10 (2020) 114

3. v_e CCπ⁺ Interactions

- $\nu_e + CH \rightarrow e^- + \pi^+ + X$
- Restricted phase-space

 $0.35 < p_e < 30 \text{ GeV}/c, \cos \theta_e > 0.7,$

 $p_{\pi} < 1.5 \text{ GeV}/c$

- Purity of ~60% with ~20% efficiency
- 3D measurement in p_e , $cos\theta_e$ and p_{π}
- Stat. limited: 355 events predicted
- Results over-predicted by both NEUT (1.6 σ) and GENIE (2.9 σ)
- No indications of excesses

The total flux-integrated cross section:

 $\sigma = 5.04 \pm_{0.73(syst.)}^{0.94(stat.)} [10^{-39} \text{cm}^2 \text{ nucleon}^{-1}]$

- NC1 π [±] important for disappearance channel of OA
- - event rate vs kinematics; $vn \rightarrow v\pi^{-}p$ also measured

[10] GGM Nucl.Phys.B 135 (1978) 45-65

4. NC1π⁺ Interactions

• $\nu/\bar{\nu} + CH \rightarrow \pi^+ + X$

- Selection with > 20% efficiency and 30-60% purity
- 2D differential measurement: p_{π} , $cos\theta_{\pi}$
- Total cross-section result on CH
- $\sigma = 6.97 \pm 1.22 \times 10^{-41} \text{ cm}^2/\text{nucleon}$

13% stat and 15% syst

- 1-1.5σ larger cross section result is preferred compared to most models
- First to provide new data on this channel since 1980
- First cross-section measurement on the NC1π⁺ channel

5. v_µ CC K⁺ Production @ ND280

1800

1600

1400

1200

1000

800

600

400

200

Ω

200

dE/dx (a.u.)

Measured

- Kaon production background $p \rightarrow K^+ + \bar{\nu}$ for proton decay searches
- First kaon measurements in T2K
- Events in FGD1 with µ⁻ and K⁺ tagged using TPC dEdX
- Efficiency ~15%, Purity ~50 %
- ~60 events expected (GENIE)
- Single bin XSec in the restricted phase-space
- Cross-sections vary up to 30% between generators
- Unblinded signal samples; results under T2K review

Outlook

- Exciting T2K XSec results being prepared for publication
 - WAGASCI/BabyMIND joint CH/water v_µCC0π
 - $v_eCC\pi^+$ in ND280 on CH
 - NC1 π + in ND280 on CH
 - $v_{\mu}CC$ kaon production in ND280 on CH
- Approaching finalisation and sharing
 - Anti- v_{μ} CC1 π in ND280 on CH
 - v_µCC1π⁺ in ND280 FGD1(CH)/FGD2(CH+H₂0)
 - NC1π⁰ in ND280 P0D
 - NCE (1p0π) in ND280 on CH
- Being actively developed
 - CC0πNp in FGD1/FGD2 TKI* with improved proton PID
 - CC0 π and CC1 π in ND280 FGDs using "4 π " samples
 - CC0πNp in FGDs with calorimetric variables
 - v_µCC1π+ in ND280 P0D
 - $v_{\mu}CC0\pi$ WAGASCI/Baby-MIND + ND280 joint analyses
 - v_µCC1π joint CH+H₂0 in WAGASCI/Baby-MIND

• Unique opportunities for XSec studies with the recently upgraded ND280

* Transverse kinematic imbalance

17

Summary

- Scrupulous studies of neutrino reactions are crucial as we enter the era of the high-precision oscillation analyses and lepton CPV search
- T2K steadily provides novel neutrino cross-section measurements with many ongoing and converging analyses
- Recent highlights on neutrino interactions in T2K with near-detectors:
 - Joint on/off-axis $v_{\mu}CC0\pi$ with potential extensions with more detectors, channels and samples
 - ND280: $v_eCC\pi^+$, NC1 π^+ the first result since 1980s(!)
 - WAGASCI/BabyMIND: $v_{\mu}CC0\pi^{\pm}$ first physics with the full detector setup
- Rich opportunities for neutrino interactions studies with the upgraded T2K near detector ND280Upgrade

