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Neutrino Oscillations
Talks on July 8 by Prof. J.W.F. Valle and on July 10 by Prof. S.K. Agarwalla, PASCOS 2024

P(να → νβ) =

∣∣∣∣∣∣ ∑
j U∗

αjUβje−
m2

j
2E L

∣∣∣∣∣∣
2

such that Uij =

 c12c13 s12c13 s13e−iδCP

−s12c23 − c12s13s23e iδCP c12c23 − s12s13s23e iδCP c13s23
s12s23 − c12s13c23e iδCP −c12s23 − s12s13c23e iδCP c13c23



where, cij = cos θij , sij = sin θij (for i,j = 1,2,3 and α, β = e, µ, τ)†.

Table: Global Fit of the oscillation parameters, assuming normal ordering (NO) (νFit 5.3).

Parameter sin2 θ12 sin2 θ13(×10−2) sin2 θ23 δCP (◦) ∆m2
21(10−5eV2/c4) ∆m2

31(10−3eV2/c4)
Best fit 0.307 2.201 0.572 197 7.41 2.511

Unsolved Problems in Neutrino Oscillation Physics
Leptonic CP Violation

• We ask whether sin δCP = 0 or not?

Neutrino Mass Hierarchy (MH)
• Whether neutrino MH follows normal ordering (NO) i.e. m1 < m2 < m3 or inverted ordering (IO) i.e.

m3 < m1 < m2 is still a question.

Mixing angle θ23
• Whether θ23 follows maximal mixing i.e. 45◦, or prefers lower octant (LO, θ23 < 45◦) to higher octant (HO,

θ23 > 45◦) is of interest to pursue. Talk by Quyen Phan To, July 9, PASCOS 2024

†Prog. Theor. Phys. 28, 870 (1962); Zhur. Eksptl’. i Teoret. Fiz. 34 (1958) 3/14
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Nνβ
∝

Production︷ ︸︸ ︷
Φα(E ) × 1

L2 P(να→νβ)(E , L, ρ; θ12, θ13, θ23, ∆m2
21, ∆m2

31, δCP)︸ ︷︷ ︸
Propagation

×
Interaction︷ ︸︸ ︷

σ(E ) × ϵ︸︷︷︸
Detection

Conventional approach:
• Uses near-site detector (ND) (<1km)

to put constraint on the unoscillated
neutrino energy spectra.

• Predicts the far-detector (FD) spectra
for a specific set of oscillation
parameters.

• The use of an ND typically reduces
systematics due to (flux×cross-section)
convolution from (10 ∼ 15)% to ∼5%
on the event rate.

New Set-up:
• Uses no Near Detector. Instead a 2nd FD

at different baseline of same detector
volume as that of the 1st FD is considered.

• The combined fiducial mass is kept intact
as that of the single FD as in the
conventional approach.

• The role of 2nd detector is not to directly
constraint the un-oscillated spectra but to
measure the oscillated spectra at a
different oscillation length.

With the proposed set-up, relatively large statistics with high power beam (eg. ESSνSB
5MW, T2HK and DUNE ≈ MW) can be achieved. Even with large uncertainty in the
flux, the correlation in the flux, cross-section and detector response may constrain
themselves via the multi-detector data fit.

Image Courtesy: Annual Review of Nuclear and Particle Science, 66, (2016) 6/14
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Experiments’ Specifications: ESSνSBa

GLoBESb is used to simulate the statistical significance of the experiment.

Baseline: 360km
Beam Power: 5MW
Det. Target: Water Cherenkov
Det. Volume: 538 ktons
Runtime: (5+5)† years

†(ν + ν̄) runtime.

Figure: Pµe (Pµ̄e) vs E for NO (solid) and IO (dashed) for δCP = 0 (blue) and 270◦ (red)
values is shown in the left (right) plot. The fluxes are given by black solid curves.

a Eur.Phys.J.ST 231 (2022) 21, 3779-3955. b Comput. Phys. Commun. 177 (2007) 432.
N.B. We acknowledge Dr. M. Ghosh of ESSνSB Collab. for sharing the GLoBES-AEDL file.
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SB FluxνAppearance Event Spectra, ESS Figure: νe (ν̄e ) appearance
events as a function of
reconstructed neutrino
(anti-neutrino) energy for

(a) δCP = 0◦ (dashed)
(b) δCP = 270◦ (solid)

with a
(i) single far detector and
(ii) two far-detectors

of mass 269 ktons each, is
shown in the right (left) plot.

In search of the second baseline...
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Figure: Pνµ→νe (Pν̄µ→ν̄e ) as a function of baseline (in km).
• Oscillation maxima is observed for the case

∆m2
32L

4En
∼ (2n − 1) × 500

km
GeV

where En (GeV) is the energy of the nth oscillation peak/dip for a
fixed baseline L.

• At fixed E=0.24 GeV; 2nd oscillation maxima for L=360km and 1st
oscillation maxima for L=120 km are observed.

• Second FD placed at relatively lower baseline means higher
statistics.
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CPV sensitivity plots

The use of far-site
detector typically
reduce systematics
due to flux×cross
section convolution
from (10 − 15)%
to ∼ 5% on the
event rate.
In these plots,
Systematic errors:
5% represents a
set-up of 2FDs
with a near
detector.
Systematic errors:
10% represents a
set-up of 2FDs
without a near
detector.
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Figure: CPV sensitivity plots.
Top left: Array of 2 FDs with L2 ≥ 360km and 10% errors on signal event rates.
Top right: Array of 2 FDs with L2 ≥ 360km and 5% errors on signal event rates.

Bottom left: Array of 2 FDs with L2 ≤ 360km and 10% errors on signal event rates.
Bottom right: Array of 2 FDs with L2 ≤ 360km and 5% errors on signal event rates.18/14



Result
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Figure: Uncertanity in 1σ precision measurement of δCP , considering a single detector
FD of fiducial mass of 538kton with a ND (black solid line), compared to that of the
cases without a ND with systematic errors of 10% for different FD baseline combinations.

Uncertanity in 1σ precision measurement of δCP , without a ND when the 2nd FD is
placed at
(i) 540 km (red solid curve), (ii) 120 km (pink), (iii) 60 km (orange), (iv) 40km (green),
and (v) 20km (cyan).

Table: Fraction of true δCP values for
which the proposed set-up without a
ND gives better 1σ precision of δCP .

FD Array Coverage
(in km) (in %)

(360,120) 60
(360, 60) 60
(360, 40) 56
(360, 20) 43.8
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Result
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Figure: Allowed region of sin2 θ23 at a 3σ C.L. for:
(i) ESSνSB with a ND (black solid line)

(ii) 2nd FD placed at 120 km and without a ND (blue line).
(iii) 2nd FD placed at 60 km and without a ND (orange line).
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Discussion & Future Scope

• We investigate the new detector configuration with no near-site detector but multiple
far-detectors placed at different baselines, and it looks promising.

• 2nd far-detector at 120 km and 60 km (shorter baseline) give better precision in the
measurement of δCP for 1σ C.L, for 60% of the true values. Preliminary result shows
that θ23 can be measured with better precision if the 2nd detector is placed at 120 km.

• Next, we shall quantitatively estmiate the precision on θ23 and θ13 and J .
• Precision measurements of δCP , sin2 θ23 and sin2 2θ13 for discrimination of lepton

flavor models.
• The magnitude of leptonic CPV violation doesn’t only depend on δCP , but is given

by the parameterization independent parameter, Jarlskog invariant J :

J = sin θ12 cos θ12 sin θ23 cos θ23 sin θ13 cos2 θ13 sin δCP

. Thus, the precision measurement of J also forms the future scope of this work.

OPEN TO QUESTIONS & FEEDBACK...
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