PASCOS 2024

New detector configuration for next-generation accelerator-based long-baseline neutrino experiments

Ankur Nath^a, Cao Van Son^b, Jennifer Thomas^c, Quyen Phan To^b

*Namrup College, Assam, India, ZIP 786623 ^bInstitute For Interdisciplinary Research in Science and Education (IFIRSE), ICISE, Vietnam ^c University College London, London

29TH INTERNATIONAL SYMPOSIUM ON PARTICLES, STRINGS AND COSMOLOGY organised by International Centre for Interdisciplinary Science Education (ICISE), Quy Nhon, Vietnam 10^{th} June, 2024

Outline

Section 1 Introduction

Section 2 Motivation and Approach

Section 3 Experiment Specifications

Section 4

Results

Section 5

Discussion and Future Scope

Neutrino Oscillations

Talks on July 8 by Prof. J.W.F. Valle and on July 10 by Prof. S.K. Agarwalla, PASCOS 2024

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{j} U_{\alpha j}^{*} U_{\beta j} e^{-\frac{m_{f}^{2}}{2E}L} \right|^{2} \text{ such that } U_{ij} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{CP}} & -c_{12}s_{13}c_{23}e^{i\delta_{CP}} & c_{13}c_{23} \end{bmatrix}$$

where, $c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$ (for i, j = 1, 2, 3 and $\alpha, \beta = e, \mu, \tau$)[†].

Table: Global Fit of the oscillation parameters, assuming normal ordering (NO) (ν Fit 5.3).

Parameter	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}(\times 10^{-2})$	$\sin^2 \theta_{23}$	$\delta_{CP}(^{\circ})$	$\Delta m_{21}^2 (10^{-5} \text{eV}^2/c^4)$	$\Delta m_{31}^2 (10^{-3} \text{eV}^2/c^4)$
Best fit	0.307	2.201	0.572	197	7.41	2.511

[†]Prog. Theor. Phys. 28, 870 (1962); Zhur. Eksptl'. i Teoret. Fiz. 34 (1958)

Neutrino Oscillations

Talks on July 8 by Prof. J.W.F. Valle and on July 10 by Prof. S.K. Agarwalla, PASCOS 2024

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{j} U_{\alpha j}^{*} U_{\beta j} e^{-\frac{m_{f}^{2}}{2E}L} \right|^{2} \text{ such that } U_{ij} = \begin{bmatrix} c_{12}c_{13} & s_{13}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{CP}} & -c_{12}s_{13}c_{23}e^{i\delta_{CP}} & c_{13}c_{23} \end{bmatrix}$$

where, $c_{ij} = \cos \theta_{ij}$, $s_{ij} = \sin \theta_{ij}$ (for i, j = 1, 2, 3 and $\alpha, \beta = e, \mu, \tau$)[†].

Table: Global Fit of the oscillation parameters, assuming normal ordering (NO) (ν Fit 5.3).

Parameter	$\sin^2 \theta_{12}$	$\sin^2 \theta_{13}(\times 10^{-2})$	$\sin^2 \theta_{23}$	$\delta_{CP}(^{\circ})$	$\Delta m_{21}^2 (10^{-5} \text{eV}^2/c^4)$	$\Delta m_{31}^2 (10^{-3} \text{eV}^2/c^4)$
Best fit	0.307	2.201	0.572	197	7.41	2.511

Unsolved Problems in Neutrino Oscillation Physics

Leptonic CP Violation

We ask whether sin δ_{CP} = 0 or not?

Neutrino Mass Hierarchy (MH)

• Whether neutrino MH follows normal ordering (NO) *i.e.* $m_1 < m_2 < m_3$ or inverted ordering (IO) *i.e.* $m_3 < m_1 < m_2$ is still a question.

Mixing angle θ_{23}

• Whether θ_{23} follows maximal mixing *i.e.* 45°, or prefers lower octant (LO, $\theta_{23} < 45^{\circ}$) to higher octant (HO,

 θ_{23} > 45°) is of interest to pursue. Talk by Quyen Phan To, July 9, PASCOS 2024

[†]Prog. Theor. Phys. 28, 870 (1962); Zhur. Eksptl'. i Teoret. Fiz. 34 (1958)

MOTIVATION

$$\mathcal{N}_{\nu_{\beta}} \propto \underbrace{\Phi_{\alpha}(E)}_{\mathsf{f}(E)} \times \underbrace{\frac{1}{L^{2}} P_{(\nu_{\alpha} \rightarrow \nu_{\beta})}(E, L, \rho; \theta_{12}, \theta_{13}, \theta_{23}, \Delta m_{21}^{2}, \Delta m_{31}^{2}, \delta_{CP})}_{Propagation} \times \underbrace{\sigma(E)}_{\mathsf{f}(E)} \times \underbrace{\epsilon}_{\mathsf{Detection}} \times \underbrace{\epsilon}_{\mathsf{Detection}} \times \underbrace{\epsilon}_{\mathsf{Detection}} \times \underbrace{\epsilon}_{\mathsf{f}(E)} \times \underbrace{\epsilon}_{\mathsf{f}(E)}$$

Image Courtesy: Annual Review of Nuclear and Particle Science, 66, (2016)

$$N_{\nu_{\beta}} \propto \Phi_{\alpha}(E) \times \frac{1}{L^{2}} P_{(\nu_{\alpha} \rightarrow \nu_{\beta})}(E, L, \rho; \theta_{12}, \theta_{13}, \theta_{23}, \Delta m_{21}^{2}, \Delta m_{31}^{2}, \delta_{CP}) \times \underbrace{\sigma(E)}_{Detection} \times \underbrace{\epsilon}_{Detection}$$
Propagation
Proposed Set-Up
Proton accelerator
$$\underbrace{r_{u} \text{ beam diverges}}_{Earth} \xrightarrow{r_{u} \text{ detector}}_{Earth} \xrightarrow{r_{u} \text{ detector}}_{Earth}$$

Conventional approach:

- Uses near-site detector (ND) (<1km) to put constraint on the unoscillated neutrino energy spectra.
- Predicts the far-detector (FD) spectra for a specific set of oscillation parameters.
- The use of an ND typically reduces systematics due to ($flux \times cross$ -section) convolution from ($10 \sim 15$)% to $\sim 5\%$ on the event rate.

Image Courtesy: Annual Review of Nuclear and Particle Science, 66, (2016)

$$\mathcal{N}_{\nu_{\beta}} \propto \underbrace{\Phi_{\alpha}(E)}_{\mathsf{F}} \times \underbrace{\frac{1}{L^{2}} P_{(\nu_{\alpha} \rightarrow \nu_{\beta})}(E, L, \rho; \theta_{12}, \theta_{13}, \theta_{23}, \Delta m_{21}^{2}, \Delta m_{31}^{2}, \delta_{CP})}_{Propagation} \times \underbrace{\underbrace{\Phi_{C}(E)}_{\mathsf{Detection}} \times \underbrace{\Phi_{C}(E)}_{\mathsf{Detection}} \times \underbrace$$

Conventional approach:

- Uses near-site detector (ND) (<1km) to put constraint on the unoscillated neutrino energy spectra.
- Predicts the far-detector (FD) spectra for a specific set of oscillation parameters.
- The use of an ND typically reduces systematics due to ($flux \times cross$ -section) convolution from ($10 \sim 15$)% to $\sim 5\%$ on the event rate.

New Set-up:

- Uses no Near Detector. Instead a 2nd FD at different baseline of same detector volume as that of the 1st FD is considered.
- The combined fiducial mass is kept intact as that of the single FD as in the conventional approach.
- The role of 2nd detector is not to directly constraint the un-oscillated spectra but to measure the oscillated spectra at a different oscillation length.

Image Courtesy: Annual Review of Nuclear and Particle Science, 66, (2016)

$$N_{\nu_{\beta}} \propto \underbrace{\Phi_{\alpha}(E)}_{\text{for }} \times \underbrace{\frac{1}{L^{2}} P_{(\nu_{\alpha} \rightarrow \nu_{\beta})}(E, L, \rho; \theta_{12}, \theta_{13}, \theta_{23}, \Delta m_{21}^{2}, \Delta m_{31}^{2}, \delta_{CP})}_{Propagation} \times \underbrace{\sigma(E)}_{\text{for }} \times \underbrace{\epsilon}_{\text{Detection}}$$

Conventional approach:

- Uses near-site detector (ND) (<1km) to put constraint on the unoscillated neutrino energy spectra.
- Predicts the far-detector (FD) spectra for a specific set of oscillation parameters.
- The use of an ND typically reduces systematics due to ($flux \times cross$ -section) convolution from ($10 \sim 15$)% to $\sim 5\%$ on the event rate.

New Set-up:

- Uses no Near Detector. Instead a 2nd FD at different baseline of same detector volume as that of the 1st FD is considered.
- The combined fiducial mass is kept intact as that of the single FD as in the conventional approach.
- The role of 2nd detector is not to directly constraint the un-oscillated spectra but to measure the oscillated spectra at a different oscillation length.

With the proposed set-up, relatively large statistics with high power beam (eg. ESS ν SB 5MW, T2HK and DUNE \approx MW) can be achieved. Even with large uncertainty in the flux, the correlation in the flux, cross-section and detector response may constrain themselves via the multi-detector data fit.

Image Courtesy: Annual Review of Nuclear and Particle Science, 66, (2016)

Experiments' Specifications: ESS ν **SB**^a

GLoBES^{*b*} is used to simulate the statistical significance of the experiment.

Figure: $P_{\mu e} (P_{\bar{\mu} e})$ vs *E* for NO (*solid*) and IO (dashed) for $\delta_{CP} = 0$ (blue) and 270° (red) values is shown in the *left* (*right*) plot. The fluxes are given by black solid curves.

^a Eur.Phys.J.ST 231 (2022) 21, 3779-3955. ^b Comput. Phys. Commun. 177 (2007) 432. **N.B.** We acknowledge Dr. M. Ghosh of ESS*ν*SB Collab. for sharing the GLoBES-AEDL file.

In search of the second baseline...

Figure: $P_{\nu_{\mu} \rightarrow \nu_{e}} (P_{\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}})$ as a function of baseline (in km).

In search of the second baseline...

- Figure: $P_{\nu_{\mu} \to \nu_{e}} (P_{\bar{\nu_{\mu}} \to \bar{\nu_{e}}})$ as a function of baseline (in km).
- Oscillation maxima is observed for the case

$$\frac{\Delta m_{32}^2 L}{4E_n} \sim (2n-1) \times 500 \frac{km}{GeV}$$

where E_n (GeV) is the energy of the nth oscillation peak/dip for a fixed baseline L.

In search of the second baseline...

- Figure: $P_{\nu_{\mu} \to \nu_{e}} (P_{\bar{\nu_{\mu}} \to \bar{\nu_{e}}})$ as a function of baseline (in km).
- Oscillation maxima is observed for the case

$$rac{\Delta m_{32}^2 L}{4E_n} \sim (2n-1) imes 500 rac{km}{GeV}$$

where ${\it E}_n$ (GeV) is the energy of the nth oscillation peak/dip for a fixed baseline L.

- At fixed E=0.24 GeV; 2nd oscillation maxima for L=360km and 1st oscillation maxima for L=120 km are observed.
- Second FD placed at relatively lower baseline means higher statistics.

Appearance Event Spectra, ESSvSB Flux, L = 120 km (269 kton)

Appearance Event Spectra, ESSvSB Flux, L = 120 km (269 kton)

Figure: Left: Event Spectra for ν_e (solid) and $\bar{\nu}_e$ (dashed) events for $\delta_{CP} = 0$ (red) and 270° (black) for L = 120km, using ESS ν SB flux profiles. **Right:** Mass Hierarchy sensitivity as a function of true δ_{CP} .

CPV sensitivity plots

The use of far-site detector typically reduce systematics due to flux×cross section convolution from (10 - 15)% to ~ 5% on the event rate.

In these plots, Systematic errors: 5% represents a set-up of 2FDs with a near detector. Systematic errors: 10% represents a set-up of 2FDs without a near detector.

 $\begin{array}{c} \mbox{Figure: CPV sensitivity plots.} \\ \mbox{Top right: Array of 2 FDs with $L2$ > 360km and 10\% errors on signal event rates.} \\ \mbox{Top right: Array of 2 FDs with $L2$ > 360km and 5\% errors on signal event rates.} \\ \mbox{Bottom left: Array of 2 FDs with $L2$ < 360km and 10\% errors on signal event rates.} \\ \mbox{Bottom right: Array of 2 FDs with $L2$ < 360km and 5\% errors on signal event rates.} \\ \mbox{18} 18/14 \end{array}$

Figure: Uncertanity in 1 σ precision measurement of δ_{CP} , considering a single detector FD of fiducial mass of 538kton with a ND (black solid line), compared to that of the cases without a ND with systematic errors of 10% for different FD baseline combinations.

Figure: Uncertanity in 1σ precision measurement of δ_{CP} , considering a single detector FD of fiducial mass of 538kton with a ND (black solid line), compared to that of the cases without a ND with systematic errors of 10% for different FD baseline combinations. Uncertanity in 1σ precision measurement of δ_{CP} , without a ND when the 2nd FD is placed at

(i) 540 km (red solid curve), (ii) 120 km (pink), (iii) 60 km (orange), (iv) 40km (green), and (v) 20km (cyan).

Table: Fraction of true δ_{CP} values for which the proposed set-up **without a ND** gives better 1σ precision of δ_{CP} .

FD Array	Coverage		
(in km)	(in %)		
(360,120)	60		
(360, 60)	60		
(360, 40)	56		
(360, 20)	43.8		

Figure: Uncertanity in 1σ precision measurement of δ_{CP} , considering a single detector FD of fiducial mass of 538kton with a ND (black solid line), compared to that of the cases without a ND with systematic errors of 10% for different FD baseline combinations. Uncertanity in 1σ precision measurement of δ_{CP} , without a ND when the 2nd FD is placed at

(i) 540 km (red solid curve), (ii) 120 km (pink), (iii) 60 km (orange), (iv) 40km (green), and (v) 20km (cyan).

Figure: Allowed region of $\sin^2 \theta_{23}$ at a 3σ C.L. for: (i) ESS ν SB with a ND (black solid line) (ii) 2nd FD placed at 120 km and without a ND (blue line). (iii) 2nd FD placed at 60 km and without a ND (orange line).

Discussion & Future Scope

- We investigate the new detector configuration with no near-site detector but multiple far-detectors placed at different baselines, and *it looks promising*.
- 2nd far-detector at 120 km and 60 km (shorter baseline) give better precision in the measurement of δ_{CP} for 1σ C.L, for 60% of the true values. Preliminary result shows that θ_{23} can be measured with better precision if the 2nd detector is placed at 120 km.
- Next, we shall quantitatively estmiate the precision on θ_{23} and θ_{13} and \mathcal{J} .
 - Precision measurements of δ_{CP} , $\sin^2 \theta_{23}$ and $\sin^2 2\theta_{13}$ for discrimination of lepton flavor models.
 - The magnitude of leptonic CPV violation doesn't only depend on δ_{CP}, but is given by the parameterization independent parameter, Jarlskog invariant *J*:

$$\mathcal{J} = \sin \theta_{12} \cos \theta_{12} \sin \theta_{23} \cos \theta_{23} \sin \theta_{13} \cos^2 \theta_{13} \sin \delta_{CP}$$

. Thus, the precision measurement of ${\mathcal J}$ also forms the future scope of this work.

Discussion & Future Scope

- We investigate the new detector configuration with no near-site detector but multiple far-detectors placed at different baselines, and *it looks promising*.
- 2nd far-detector at 120 km and 60 km (shorter baseline) give better precision in the measurement of δ_{CP} for 1σ C.L, for 60% of the true values. Preliminary result shows that θ_{23} can be measured with better precision if the 2nd detector is placed at 120 km.
- Next, we shall quantitatively estmiate the precision on θ_{23} and θ_{13} and \mathcal{J} .
 - Precision measurements of $\delta_{CP},\,\sin^2\theta_{23}$ and $\sin^22\theta_{13}$ for discrimination of lepton flavor models.
 - The magnitude of leptonic CPV violation doesn't only depend on δ_{CP}, but is given by the parameterization independent parameter, Jarlskog invariant *J*:

$$\mathcal{J} = \sin \theta_{12} \cos \theta_{12} \sin \theta_{23} \cos \theta_{23} \sin \theta_{13} \cos^2 \theta_{13} \sin \delta_{CP}$$

. Thus, the precision measurement of ${\mathcal J}$ also forms the future scope of this work.

OPEN TO QUESTIONS & FEEDBACK...