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Neutrino Oscillations
’ Talks on July 8 by Prof. J.W.F. Valle and on July 10 by Prof. S.K. Agarwalla, PASCOS 2024
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where, ¢j = cos0jj, s;j =sin0j; (for ij = 1,2,3 and o, 3 = e, , T)T.

Table: Global Fit of the oscillation parameters, assuming normal ordering (NO) (vFit 5.3).

Parameter | sin? 1p | sin® 013(x10°2) [ sin®6p3 | 6cp(°) [ AmZ (107 5eV2/ch) [ amZ (10732 /%)
Best it | 0.307 | 2.201 [ 0572 | 197 | 7.41 | 2.
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Unsolved Problems in Neutrino Oscillation Physics

Leptonic CP Violation
® We ask whether sin §cp = 0 or not?

Neutrino Mass Hierarchy (MH)

®  Whether neutrino MH follows normal ordering (NO) i.e. m; < mp < m3 or inverted ordering (10) i.e.
m3 < mp < my is still a question.

Mixing angle 053
®  Whether 63 follows maximal mixing i.e. 45°, or prefers lower octant (LO, 6,3 < 45°) to higher octant (HO,
033 > 45°) is of interest to pursue. | Talk by Quyen Phan To, July 9, PASCOS 2024
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Conventional approach:

® Uses near-site detector (ND) (<1km)
to put constraint on the unoscillated
neutrino energy spectra.

® Predicts the far-detector (FD) spectra
for a specific set of oscillation
parameters.

® The use of an ND typically reduces
systematics due to (flux X cross-section)
convolution from (10 ~ 15)% to ~5%
on the event rate.
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Conventional approach: New Set-up:

® Uses near-site detector (ND) (<1km) ® Uses no Near Detector. Instead a 2nd FD
to put constraint on the unoscillated at different baseline of same detector
neutrino energy spectra. volume as that of the 1st FD is considered.

® Predicts the far-detector (FD) spectra ® The combined fiducial mass is kept intact
for a specific set of oscillation as that of the single FD as in the
parameters. conventional approach.

® The use of an ND typically reduces ® The role of 2nd detector is not to directly
systematics due to (flux X cross-section) constraint the un-oscillated spectra but to
convolution from (10 ~ 15)% to ~5% measure the oscillated spectra at a
on the event rate. different oscillation length.

Image Courtesy: Annual Review of Nuclear and Particle Science, 66, (2016) 8/]_4
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Conventional approach: New Set-up:

® Uses near-site detector (ND) (<1km) ® Uses no Near Detector. Instead a 2nd FD
to put constraint on the unoscillated at different baseline of same detector
neutrino energy spectra. volume as that of the 1st FD is considered.

® Predicts the far-detector (FD) spectra ® The combined fiducial mass is kept intact
for a specific set of oscillation as that of the single FD as in the
parameters. conventional approach.

® The use of an ND typically reduces ® The role of 2nd detector is not to directly
systematics due to (flux X cross-section) constraint the un-oscillated spectra but to
convolution from (10 ~ 15)% to ~5% measure the oscillated spectra at a

on the event rate. different oscillation length.

With the proposed set-up, relatively large statistics with high power beam (eg. ESSvSB
5MW, T2HK and DUNE ~ MW) can be achieved. Even with large uncertainty in the

flux, the correlation in the flux, cross-section and detector response may constrain
themselves via the multi-detector data fit.
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Experiments’ Specifications: ESSvSB?

GLOBES?” is used to simulate the statistical significance of the experiment.

B ) Y Baseline: 360km

: Beam Power: | 5MW

Det. Target: Water Cherenkov (v + &) runtime.
Det. Volume: | 538 ktons

Runtime: (5+5)" years
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Figure: Pue (Pe) vs E for NO (solid) and 10 (dashed) for §cp = 0 (blue) and 270° (red)
values is shown in the left (right) plot. The fluxes are given by black solid curves.

2 Eur.Phys.J.ST 231 (2022) 21, 3779-3955. © Comput. Phys. Commun. 177 (2007) 432.
N.B. We acknowledge Dr. M. Ghosh of ESSvSB Collab. for sharing the GLoBES-AEDL file.

10/14



events/50MeV

v,

Appearance Event Spectra, ESSVSB Flux

45

8

— 360 km, 538 kton

— 360 km, 269 kton

T8 = o

—8,,=270

0.4 0.6 08 112 12 16
Reconstructed Anti-neurino Energy, E™ (GeV)

11/14



events/50MeV

A

Appearance Event Spectre Appearance Event Spectra, ESSVSB Flux Figure: v (De) appearance
events as a function of

—360km, 538 kton | reconstructed neutrino
(anti-neutrino) energy for
— 360 km, 269 kton
(a) &cp = 0° (dashed)
> .- .
s i -8, =0 = °© i
: L cp ) (b) 8cp = 270° (solid)
% 250 v —8, =270 with a
g F ! N
= 2000 B (i) single far detector and
150 - .
E RS (ii) two far-detectors
100 ! Lt
Soé - i of mass 269 ktons each, is
- El ‘ ‘ R ) shown in the right (left) plot.
02‘ - ‘0,4 0.6 0.8 ‘DZ‘ - ‘OA‘ - ‘06‘ - ‘DB‘ — - 14 16
Reconstructed Anti-neutrino En Reconstructed Neutrino Energy E (Gev)

12/14



Appearance Event Spectré

Appearance Event Spectra, ESSVSB Flux

Figure: v (De) appearance
events as a function of

reconstructed neutrino
(anti-neutrino) energy for

(a) &cp = 0° (dashed)
(b) Scp = 270° (solid)
with a
(0
(i
of mass 269 ktons each, is
shown in the right (left) plot.

single far detector and

two far-detectors

4s0E- — 360 km, 538 kton
400F-
E — 360 km, 269 kton
350
3 ok 3 oy :
2 300 3 e "8 =0
2 E 2 S
B 2 I —8., =270
2 250 2 R cr =
g E g :
S 2005 8 ! e
e E K L - e
150~ 1 "
100 [
s0f- o N
E i = Bl TR .
0.2 02 04 06 08 T 14

. 0.6 0.8
Reconstructed Anti-neutrino En

Reconstrucied Neutrino Energy, E** (GeV)

In search of the second baseline...

Appearance Probability, E =0.24 GeV, NO
016
E jam2,| = 2511 x 10° ev? —v,8,=0°
0.14— AmZ, =7.41x10° eV? —7, 8,70
C sin’0,,= 0.5 o
0.12f— sin’,, = 0.307 v 65;2700 K
C sin®,, = 0.02201 =, 8,,=270 S
01— ./
ko
& o8
o C
0.06—
0.04F
0.02f;

300
Baseline (km)

Figure: PV;L*’VE (PVLHV’e) as a function of baseline (in km).
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® At fixed E=0.24 GeV; 2nd oscillation maxima for L=360km and 1st
oscillation maxima for L=120 km are observed.

® Second FD placed at relatively lower baseline means higher
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Appearance Event Spectra, ESSvSB Flux, L = 120 km (269 kton)
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Figure: Left: Event Spectra for v, (solid) and Ze (dashed) events for §cp = 0 (red) and 270°
(black) for L = 120km, using ESSvSB flux profiles. Right: Mass Hierarchy sensitivity as a
function of true dcp.
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CPV sensitivity plots
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Figure: CPV sensitivity plots.
Top left: Array of 2 FDs with L2 > 360km and 10% errors on signal event rates.
Top right: Array of 2 FDs with L2 > 360km and 5% errors on signal event rates.
Bottom left: Array of 2 FDs with L2 < 360km and 10% errors on signal event rates.

Bottom right: Array of 2 FDs with L2 < 360km and 5% errors on signal event rates.18/14



Result
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Figure: Uncertanity in 1o precision measurement of dcp, considering a single detector
FD of fiducial mass of 538kton with a ND (black solid line), compared to that of the
cases without a ND with systematic errors of 10% for different FD baseline combinations.
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Figure: Uncertanity in 1o precision measurement of dcp, considering a single detector
FD of fiducial mass of 538kton with a ND (black solid line), compared to that of the
cases without a ND with systematic errors of 10% for different FD baseline combinations.
Uncertanity in 1o precision measurement of §p, without a ND when the 2nd FD is

placed at

(i) 540 km (red solid curve), (ii) 120 km (pink), (iii) 60 km (orange), (iv) 40km (green),
and (v) 20km (cyan).
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Figure: Uncertanity in 1o precision measurement of dcp, considering a single detector
FD of fiducial mass of 538kton with a ND (black solid line), compared to that of the

cases without a ND with systematic errors of 10% for different FD baseline combinations.

Uncertanity in 1o precision measurement of §p, without a ND when the 2nd FD is
placed at

(i) 540 km (red solid curve), (ii) 120 km (pink), (iii) 60 km (orange), (iv) 40km (green),
and (v) 20km (cyan).

Table: Fraction of true §cp values for
which the proposed set-up without a
ND gives better 1o precision of §¢p.

FD Array Coverage
(in km) (in %)
(360,120) 60
(360, 60) 60
(360, 40) 56
(360, 20) 43.8

21/14



Result
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Figure: Allowed region of sin? 3 at a 3¢ C.L. for:
(i) ESSvSB with a ND (black solid line)
(ii) 2nd FD placed at 120 km and without a ND (blue line).

(iii) 2nd FD placed at 60 km and without a ND (orange line).
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Discussion & Future Scope

® WWe investigate the new detector configuration with no near-site detector but multiple
far-detectors placed at different baselines, and it looks promising.

® 2nd far-detector at 120 km and 60 km (shorter baseline) give better precision in the
measurement of §¢p for 1o C.L, for 60% of the true values. Preliminary result shows
that 623 can be measured with better precision if the 2nd detector is placed at 120 km.
® Next, we shall quantitatively estmiate the precision on 623 and 613 and J.

® Precision measurements of §cp, sin? @23 and sin? 2613 for discrimination of lepton
flavor models.

® The magnitude of leptonic CPV violation doesn’t only depend on §¢p, but is given
by the parameterization independent parameter, Jarlskog invariant 7:

J = sin 012 cos 12 sin 023 cos 023 sin H13 cos® 013 sin dcp

. Thus, the precision measurement of 7 also forms the future scope of this work.
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