

National Center for Theoretical Sciences Physics Division 國家理論科學研究中心 物理組

Dirac neutrino masses and meson decay anomalies with leptoquarks

Leon Manuel Garcia de la Vega, NCTS in collab. w. Prof. Chen C.H. and Prof. Chiang C.W.

PASCOS 2024, July 10th 2024

Contents

- Neutrinos
- New Physics?
- Neutrino masses with leptoquarks

Standard Model and Beyond

Neutrino mass models Oscillation anomalies

Astrophysical observations Cosmology

Standard Model of Elementary Particles

- Neutrino Oscillations
 - Super-Kamiokande + SNO
- Neutrino masses + mixing in leptonic sector

$$|\nu_e\rangle = U_{e1}|\nu_1\rangle + U_{e2}|\nu_2\rangle + U_{e3}|\nu_3\rangle$$

$$P_{lpha
ightarrow eta} \, = \, \left| \, \left\langle \,
u_eta \, \left| \, \,
u_lpha(L) \,
ight
angle \,
ight|^2 \, = \, \left| \, \sum_j \, U^*_{lpha j} \, U_{eta j} \, e^{-i rac{m_j^2 \, L}{2E}} \,
ight|^2$$

 $(-0.1568 \rightarrow 0.1489) + i(-0.1182 \rightarrow 0.1520)$ $0.5135 \rightarrow 0.6004$ $(0.4636 \rightarrow 0.6749) + i(-0.0521 \rightarrow 0.0668)$ $0.6499 \rightarrow 0.7719$ $0.6897 \rightarrow -0.4821) + i(-0.0446 \rightarrow 0.0644)$ $0.6161 \rightarrow 0.7434$

Neutrino Fit : de Salas, Forero, Gariazzo, Martínez-Miravé, Mena, Ternes, Tórtola & Valle

rel. decay

- Beta decay kinematics:
- ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \bar{\nu}_{e}$
- KATRIN (arXiv:2406.13516, 259 d): -amplitude
 - $m_{\nu}^{eff} < 0.45 \text{ eV} (90\%) \text{ C.L.}$
- Cosmology

(95%, Planck TT, TE, EE+lowE $\sum m_{\nu} < 0.13 \text{ eV}$ +BAO),

• Dirac mass terms (Charge conserving)

• $M_D \bar{\nu}_R \nu_L$

- Needs additional right handed field $\nu_R \sim (1,1,0)$
- 4 d.o.f
- Majorana mass terms forbidden by a low energy symmetry :
 - global gravity? , gauge boson?
 - Why is the Yukawa coupling $Y_{\nu} \bar{L} \tilde{H} \nu_R$ so small? $\frac{m_{\nu}}{---} \sim 10^{-11}$
 - Is $Y_{\nu} \overline{L} \widetilde{H} \nu_R$ an effective coupling?

Majorana and Dirac neutrinos

 v_{EW}

• Majorana mass terms

•
$$M_M \bar{\nu}_L^C \nu_L$$

- Lepton number non-conserving:
 - LNV in 2 units
 - Neutrinoless double beta decay

$$\langle m_{\beta\beta} \rangle = \left| U_{ei}^2 m_i \right|$$
$$T_{1/2}^{0\nu} = \left(G \left| \mathcal{M} \right|^2 \langle m_{\beta\beta} \rangle^2 \right)^{-1} \simeq 10^{27-28} \left(\frac{0.01 \text{ eV}}{\langle m_{\beta\beta} \rangle} \right)^2 \text{ y}$$
$$\langle m_{\beta\beta} \rangle < 0.028 - 0.122 \text{ eV}$$
$$KamLAND-ZEN$$
$$(A, Z) \to (A, Z+2) + 2e^- + Q_{\beta\beta}$$

Majorana and Dirac neutrinos

M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, 1996

Neutrino mass models

- Weinberg operator:
- Three tree level completions:

 $\frac{C_W}{L} \bar{L}^C \tilde{H} \tilde{H} L$

Zee 1980 Babu 1988 Ma 2006

Majorana masses

- Dirac Seesaws, loop level masses
- Remnant symmetries- Lepton number

Neutrino mass models

Dirac masses

Babu & He, 1989 Peltionemi, Tommasini & Valle, 1993 Centelles-Chulia, Srivastava & Valle, 2016

• Muon g-2 results in tension with the SM(?)

New Physics? **g-2**

Muon g-2 @ Fermilab

Fig 1 from Colangelo et. al., 2022 Prospects for precise predictions of a_{μ} in the Standard Model

New Physics? **g-2**

WP20

-60 -50 -4

_

-20

-10

 $(a_{\mu}^{\rm SM}-a_{\mu}^{\rm exp}) \ge 10^{10}$

0

-30

-40

20

10

Meson decay anomalies

$$R_D \equiv \frac{\mathcal{B}(\overline{B} \to D \tau \,\overline{\nu}_{\tau})}{\mathcal{B}(\overline{B} \to D \,\ell \,\overline{\nu}_{\ell})}, \qquad R_{D^*} \equiv \frac{\mathcal{B}(\overline{B} \to D^* \tau \,\overline{\nu}_{\tau})}{\mathcal{B}(\overline{B} \to D^* \ell \,\overline{\nu}_{\ell})} \qquad 0.2$$

Meson decay anomalies

b

u

- $B^+ \to K^+ \nu \nu$
- SM BR:
- $\mathscr{B}(B^+ \to K^+ \nu \nu)_{SM} = (5.58 \pm 0.37) \times 10^{-6}$
- Belle- II 2023 result:
- $\mathscr{B}(B^+ \to K^+ \nu \nu)_{exp} = (2.3 \pm 0.7) \times 10^{-5}$
- 2.7σ tension excess

Neutrino masses + new physics w. LQs

- Majorana Masses with LQs:
- LQs have definite lepton number
- Majorana masses require L breaking:
 - At least 2 leptoquarks with different mixing

From I. Doršner et. al., Physics of leptoquarks in precision experiments and at particle colliders

• At least 2 leptoquarks with different L must be introduced and L broken with LQ

$$S_3 = (ar{3}, m{3}, 1/3)$$

 $ilde{R}_2 = (m{3}, m{2}, 1/6)$
Chua, He & Hwang , 2000

Neutrino masses + new physics w. LQs S3+R2 model

muon g-2

- R_D
- $\operatorname{CDF} M_W$
- $B \rightarrow K \nu \nu$

Freitas et. al. Interplay between flavor anomalies and neutrino properties, 2023

Dirac neutrinos and Leptoquarks

- For Dirac ν no L breaking is necessary: only one type of LQ is needed (+ the right handed ν). No LQ contribution to $0\nu\beta\beta$
- To forbid dim-4 neutrino mass a symmetry must be introduced and kept at low energies
- Consider $S \sim (3, 1, -2/3)$

	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_X$
L_i	1	2	-1/2	0
$ e_i $	1	1	-1	0
Q_L	1	2	1/6	x/2
$ u_R $	1	1	2/3	x/2
d_R	1	1	-1/3	x/2
ν_R	1	1	1	X
H	1	2	1/2	0
$\mid S \mid$	3	1	-2/3	x/2
S'	3	1	-2/3	3x/2

Dirac neutrinos and Leptoquarks

$\mathcal{L}_{Y} = Y^{l}\overline{L}He_{R} + Y^{u}\overline{Q}\tilde{H}u_{R} + Y^{d}\overline{Q}Hd_{R} + Y^{LL}\overline{Q}^{C}\epsilon LS^{*} + \overline{Y}^{RR}\overline{d_{R}}^{C}S^{\prime*}\nu_{R}$ $+Y^{RR}\overline{u_R}^CS^*e_R+h.c.$

After LQ mixing and charged fermion diagonalization we have the following physical Yukawa couplings

$$\begin{aligned} \mathcal{L}_Y \supset &(\overline{u_L'^C} \xi_1 e_L' + \overline{d_L'^C} \xi_2 \nu_L + \overline{u_R}^C \xi_4 e_R) (\cos \theta_S S_A \\ &+ (\overline{d_R}^C \xi_3 \nu_R) (\sin \theta_S S_A + \cos \theta_S S_B) + h.c. \\ &\xi_1 = U_{CKM}^T \xi_2 U_{PMNS}^\dagger \end{aligned}$$

Dirac neutrino masses are induced at one loop:

$$M_{\nu} = f(M_A, M_B, \theta_S) \xi_2^{\dagger} m_d \xi_3,$$

$$f(M_A, M_B, \theta_S) = \frac{\cos \theta_S \sin \theta_S}{(4\pi)^2} \ln \left(\frac{M_A^2}{M_B^2}\right)$$

 $-\sin\theta_S S_B$)

Dirac neutrinos and Leptoquarks

• Example B.P.

• N.H.
$$\sum m_{\nu} = 0.8 eV$$
, $m_A = 1500 \text{GeV}$

- $R_D = 0.347$, $R_{D^*} = 0.288$, $R_K = 2.94$,
- $a_{\mu} = 2.242 \times 10^{-9}$
- $BR(\mu \to e\gamma) = 1.2 \times 10^{-13}$, $BR(\mu \to 3e) = 6.5 \times 10^{-17}$

D. Straub, "flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond" arXiv:1810.08132

/, $m_B = 2000 \text{GeV}$, $\theta_{LO} = 10^{-6}$

Summary

- New physics linked to neutrino masses can be lighter not behind a desert BSM physics linked to neutrino mass may already be visible
- Low energy and collider physics are necessary to ellucidate neutrino mass mechanisms