Thanaporn Sichanugrist (UTokyo), PASCOS 2024 Wednesday

Wavelike dark matter detection using qubits (1) *Phys. Rev. Lett. 131 (2023) 21, 211001* **(2)** *Phys. Rev. Lett. 133 (2024) 2, 021801*

S. Chen (exp), H. Fukuda (th), T. Inada (exp), T. Moroi (th), T. Nitta (exp), TS (th)

1

Background and Motivation

Qubit is two-level system developed for computation

Gap

James Amundson, Elizabeth Sexton-Kennedy, EPJ Web of Conferences 214, 09010 (2019)

Background and Motivation

In the same time, it could be a good quantum sensor Qubit is two-level system developed for computation

-
-
- precise readout
- state controllability
- tunable energy gaps
- Quantum enhancement

Based on

- (1) Hidden photon DM search with transmon qubits [Chen, Fukuda, Inada, Moroi, Nitta, TS, *Phys. Rev. Lett. 131 (2023) 21, 211001*]
- (2) Quantum computation to enhance detection [Chen, Fukuda, Inada, Moroi, Nitta, TS, *Phys. Rev. Lett. 133 (2024) 2, 021801]*

Transmon qubit excitation as DM signal *^ω*

Dark matter search using qubit

Axion dark matter, mass m_a

• DM density $\rho_{\rm DM} = \frac{1}{2} m_a^2 a_0^2$ (local $\rho_{\rm DM} \sim 0.45 \text{ GeV/cm}^3$) 1 2

Axion dark matter $\mathscr{L} = -\frac{1}{4}$ 4 *Fμν* $F_{\mu\nu}$ + 1 2 $\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}$ **Axion Lagrangian**

2 *m*2 *aa*² − *gaγγaE* ⋅ *B a B*0 *γ gaγγ* Axion-photon coupling

$$
m_a^2 a_0^2
$$
 (local $\rho_{DM} \sim 0.45$ GeV/cm³)

Axion dark matter

- Mass $m_a \ll 1$ $eV \Rightarrow$ [# particles within De-Broglie volume] $\gg 1$
- Axion field $a(t) = a_0 \cos(m_a t \alpha)$

-
- **Equation of motion**

$$
\partial_t^2 \overrightarrow{E} = -g_{a\gamma\gamma} a_0 \cos(m_a t - \alpha) \overrightarrow{B}_0
$$

with boundary condition $E_{\parallel} = 0$

$\bar{E}^{(a)} = \bar{E}^{(a)} \cos(m_a t - a)$; $\bar{E}^{(a)} = g_{a\gamma\gamma} a_0 B_0 \kappa$

With κ expresses the cavity effect and *can be larger than 1*

Axion induced electric field Axions induce electric field $\,E\,$ under the presence of magnetic field B_0 applied

Transmon qubit as DM sensor

Gap not the same

Hamiltonian $H_0 = Q^2/2C - E_J \cos \theta$; $\theta \equiv \phi_1$ $H_0 \simeq \omega \, | \, e \rangle \langle e \, | \,$ with $\omega = \sqrt{4 e^2 E_J/C}$

$$
\frac{1-\phi_2}{\frac{1}{\phi}\phi_1} = \frac{1}{\phi} \frac{\frac{1}{\phi}\omega_1}{\frac{1}{\phi}\omega_1} \frac
$$

Transmon

Transmon qubit as axion DM sensor

Induced voltage on capacitor: $\Delta V(t) = dE^{(a)}$ ⃗ $(t)\cdot \hat{z}$

$$
\frac{d}{dt}\begin{pmatrix}\psi_g\\ \psi_e\end{pmatrix} = \begin{pmatrix} 0 & ie^{-i\alpha}\eta\\ ie^{i\alpha}\eta & 0\end{pmatrix}\begin{pmatrix}\psi_g\\ \psi_e\end{pmatrix}
$$

; $\eta \equiv \sqrt{\omega C} d\bar{E}^{(a)} \cos \Theta / 2\sqrt{2}$

Interaction hamiltonian:

$$
H_{\rm int} = Q \Delta V
$$

$$
H = \omega |e\rangle\langle e|
$$

-2\eta cos(m_at - \alpha)(|g\rangle\langle e| + |e\rangle\langle g|)

For $m_a = \omega$, the Schrödinger Eq. is

Qubit direct excitation due to external field

Gradual growth of probability **;** $\tau = \min\{\tau_{DM}, \tau_{qubit}\} \sim 100 \,\,\mu s$

$$
\tau \equiv |\langle g | e \rangle|^2 \simeq \eta^2 \tau^2
$$

$$
(0.11 \left(\frac{g_{a\gamma\gamma}}{10^{-10} \text{ GeV}^{-1}}\right)^2 \left(\frac{m_a}{1 \text{ }\mu\text{eV}}\right)^{-1} \left(\frac{B}{1 \text{ T}}\right) \left(\frac{\kappa}{1}\right)^2
$$

$$
\left(\frac{\tau}{100 \text{ }\mu\text{s}}\right)^2 \left(\frac{C}{0.1 \text{ pF}}\right) \left(\frac{d}{100 \text{ }\mu\text{m}}\right)^2 \left(\frac{\rho_{\text{DM}}}{0.45 \text{ GeV/cm}^3}\right)
$$

Process of measurement

For each frequency bin

Significance $\sigma = N_{g\rightarrow e}/\sqrt{Bkg}$; Bkg = $p_{noise}n_qN_{rep}$

Quantum enhancement by quantum circuits

Individual measurement

Using quantum circuit

$p_e \propto n_q^2$ Prob. that a qubit is excited **Prob.** that a qubit is excited

(2) Phys. Rev. Lett. 133 (2024) 2, 021801

Sensitivity plot (Axions) $f\left(\textrm{GHz}\right)$ $10¹$

- -106 bins
- -Each bins take time \sim 15 sec
- -Total measurement time ~ 1 year

 $p_{\text{error}} = 0.1$ % per qubit

KSVZ

DFSZ

• Coherent wave-like dark matter (axion DM or hidden photon DM) can excite

• Transmon has good sensitivity, reaching unexplored parameter regions of

- qubits, resulting in detectable signal
- axion DM
- reaching QCD axions

• Enhancement with cavity effect and the quantum circuit is possible, even

Backup kappa factor

κ **factor from cavity effect**

• In general, we can write,

$$
\kappa = \sum_{m} \overrightarrow{E}_{m}(r) \cdot \hat{z} \left[\int d^{3}x \frac{m_{a}^{2}}{m_{a}^{2} - \omega_{m}^{2}} \overrightarrow{E}_{m} \cdot \hat{B}_{0} \right]
$$

With cylinder shielding cavity, we have

e mode function
$$
E_m = \frac{1}{\sqrt{V}} \frac{J_0(\omega_m r)}{J_1(\omega_m R)}
$$

which can be larger than 1 and scale $\sqrt{m_a R}$ at large R

$$
\kappa = 1 - \frac{J_0(m_a r)}{J_0(m_a R)}
$$
 which can be larger th

Example of cavity effect with $m_a R = 10$

$E^{(a)} = \bar{E}^{(a)} \cos(m_a t) \hat{z}$ with $\bar{E}^{(a)} = g_{a\gamma\gamma} a_0 B_0 \kappa$ due to axion DM field

