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INTRODUCTION AND MOTIVATION

- Magnetic fields are observed in the universe on different
coherence length scales.

- Faraday rotation measurements and Gamma rays from blazars
put a bound on large-scale magnetic fields. [AN, IV, Science 328,
73-75 (2010)]

- The strength measured is 107" < By < 1072 G.

- Inflationary magnetogenesis is the most widely accepted theory
to explain the existence of large-scale fields. [RS et al. Phys. Rev.
D 96, 083511 (2017)]

- It suffers from strong coupling and backreaction problems.

- Propose a novel mechanism to produce a large-scale magnetic
field without an explicit coupling.

- Anisotropic inflation has been proposed in the literature to
explain the cold spots in CMB.
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- We work with a Bianchi-I-type metric

ds’ = a’(n) [-dn’ + b*(n)dx?* + dy’ + dz’] (1)
n — Conformal time ; a(n) — Scale factor

b(n) — Anisotropic parameter

- Bound on the anisotropic parameter:
1. No backreaction on background evolution of inflaton field.
2. The produced EM field does not violate inflation.
3. Reduces to the conformally flat background in the infinite past.

- No explicit coupling of the inflaton field to the gauge field, free
action:

1
S = = / d“X/=GgF u F*

Fuw = 0,A, — 0,A, , A, — Magnetic vector potential.
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- The anisotropic parameter is modeled as,

2
b(n) =1+ a e~ (G5) (2)
a — Strength of the anisotropy , n,, — Duration of the
anisotropy
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Figure 1: Variation of anisotropic factor b with time.
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EVOLUTION EQUATIONS

- Gauge choice: Ay = 0.
- Constraint equation:

gmok, = 0; (§'=a’g)) (3)
- Time evolution of vector potential:
b’ o »
AL+ A+ Gind R — GMOFmn = 0 (4)

n n i I?k}
(47,0, V(r.5)] = *“”)@—gw)<w

- Evolution in the momentum space:

b’ ] i
ug"‘gu;"‘gﬂg/’nuf‘*‘gm (RmRiun — RnRjum) = 0. (6)



MODE FUNCTION EVOLUTION

- Evolution of mode functions:
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Figure 2: Evolution of mode functions with time for anisotropic free
parameters o = 3, kg = —2 (0; = \/Eui).
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EM POWER SPECTRA

- Power spectra of the EM field are defined as:

Ope /s

’PE/B(I?un) dlnk

- In terms of mode functions:

. B3 / 2
PelnF) = g (o + P + W00 ) )

- BT 1 .
Pal0F) = 5z | 5 (20 + lul? + P = 2R010)

— 2§R(u1u§)> + <|u2|2 + |us)?® - 2%(u2u§))] (8)
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- The total energy of the background:

bl
_ 0 __ 2012 2
Ptotal = _TO = 3H Mpl + ZHMpI% (9)
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Figure 3: Evolution of the ratio of anisotropic energy density to
inflationary energy density with e-folding number.

N =In(a/0enqa) ;a=—1/Hn 5
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BOUND ON ANISOTROPIC PARAMETERS

- We get the upper limit on a < 1.48. (p;—”f ~ 0.5)

- Checking backreaction from produced EM field:
- For a = 1.45, Fenm = —1we have

PE + pPB
Pinf

~ 1077,

- No backreaction from produced EM field during inflation.
- Anisotropy does not affect inflation.
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Figure 4: Variation of present strength of magnetic field with
anisotropic parameter « for kpm = —2. 10
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Figure 5: Variation of present strength of magnetic field with kn, for
a = 1.45.
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Figure 5: Variation of present strength of magnetic field with kn, for
a = 1.45.

- Maximum magnetic field value obtained through instant
reheating: By ~ 3 x 102" G.
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SUMMARY

- The anisotropic parameter « is constrained from back-reaction
03 <a<148

- The produced EM field does not back-react to the inflationary
background.

- We can achieve By ~ 3 x 102" G with instant reheating.

- With the introduction of reheating, we can further strengthen up
to By ~ 4 x 10720 G.

- We get a rather tight constraint on 0.132 < wef < 0.164.
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