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Pulsar Timing Arrays, nano-Hz Gravitational waves, and 
supermassive black hole binaries (SMBHB)
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What about the “final parsec problem”?
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Pulsar Timing Array as GW detector

Pulsars are precise clocks.

Earth-pulsar system as gravitational wave antenna. 
Gravitational waves change the arrival time of pulses.

Estabrook, Wahlquist ’75; Sazhin ’77; Detweiler ’79 

GW: Distinctive quadrupolar 
inter-pulsar correlation. Hellings, Downs ’82
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The usual suspects: inspiraling SMBHB 

But…one has to first get to a orbital separation of  pc. ∼ 0.01
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Do SMBHBs merge in the  
lifetime of the Universe?



First-order phase transition in a nearly conformal dark sector 
and the production of gravitational waves

II. Phase Transition Interpretation

 Fujikura, Girmohanta, Nakai and Suzuki [PLB 846, 138203 (2023)] 
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Cosmological phase transitions

1st order 2nd order

T

Phase transition (PT) occurs when there is a mismatch of true ground state of the 
theory at zero and non-zero temperatures. 

1st order phase transition proceeds via nucleation, expansion and merger of bubbles of 
the true ground state.
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The collision of bubbles and subsequent fluid flows produce shear stresses that 
source GW. 

f0 = f*
a(τ*)
a(τ0)

Observed frequency  is redshifted and is associated with the epoch when GW was 
produced.

f0

f0 ≃ 10−8 Hz ( T*

1 GeV )
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QCD phase transition is not first order.

Peak frequency in the nHz implies a phase 
transition temperature  ~  GeV.T* 𝒪(0.1 − 1)

Calculate the bubble 
nucleation rate from the 

bounce action  SB
Γ ∼ T4e−SB

Calculable Effective parameters 
: Latent heat released 

: Bubble nucleation rate 
: Bubble wall speed

α
β

vw

Extensive numerical 
simulations have given 

approximate analytical fit for 
the resulting GW spectrum

From the underlying field theory to GW spectra

Dark first order phase transition? 

(BSM) Supercooled electroweak phase 
transition must have  Hz.f EW

peak ≳ 10−4

(Ellis et. al. JCAP 04 (2019) 003)

Motivation 
Phase transition provides a better fit to the data than SMBHB only expectation.

Observed: NANOGrav 15 yr
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Interpretation in terms of a confining dark 
sector phase transition. (Nakai et. al. 2021)

Generically, confinement-deconfinement and chiral phase transitions in QCD-
like theories do not reach the strength required for the PTA signal explanation.
(See eg: Reichert et. al. JHEP 01 (2022) 003 ; Fujikura, Nakai, Sato, Wang (arXiv:2306.01305)

Improvement of cosmic SMBHB modeling, or 
inclusion of environmental effects required. 
(see eg: Ellis et. al., arXiv: 2306.17021) 

Why the phase transition interpretation?

Valuable to find particle physics models that can generate the reported signal.

Utilize weakly coupled description of deconfining phase transition via AdS/CFT.

The observed gravitational wave spectral shape 
is different from SMBHB merger expectation.
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Below  : IR brane configuration 
has lower free-energy
T (D)

c

IR brane bubbles appear and a 
strong first-order phase transition 

proceeds.

SM

UV IR

SU(NH)

Dark  confinement 
generates radion potential

SU(NH)

 
confinement 

generates 

SU(NH)

Veff(φ)

Dual 5D description

IR brane replaced by an event 
horizon +  in the bulkSU(NH)

Rattazzi+ 2002 ; Servant+ 2017
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Theoretical challenges to the phase transition interpretation and 
possible resolution: Dark Matter and Baryon Asymmetry

III. Cold Darkogenesis

Fujikura, Girmohanta, Nakai and Zhang, arXiv:2406.12956 
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Supercooled phase transition naturally provides a setting for cold baryogenesis.
Shaposnikov et. al. (1999) ;  Konstandin, Servant (2011)

Dark baryon asymmetry Baryon asymmetry & Asymmetric DM.

Cold Darkogenesis

Dilaton stabilization Cold darkogenesis Dark baryon number

Spin 0

Spin 1/2

Spontaneous breaking of SU(2)D

 anomalous under U(1)D SU(2)D

Baryon dark matter

Neutron portal interaction for 
asymmetry sharing with SM

i = 1,⋯, NDL
; j = 1,⋯, NDB

The model
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• The later induces dark lepton number violation via anomaly.
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Λn ≳ 2

Λn ≲ 15
𝒪n ∼

1
Λ2

n
χuRdRdR;

ℬf = [
2 + 4NDL

4NDL
+ NDB

+ 2 ] 𝒟L,in 𝒟B = [
NDB

4NDL
+ NDB

+ 2 ] 𝒟L,in mpD
≃ 5

ℬf

𝒟B
GeV; ;

✦ Asymmetries in the visible sector  and dark baryon sector  can be related:ℬf 𝒟B



Asymmetry Sharing
✦ Generated dark asymmetry  is stored in  :𝒟L,in Lχ , χ

𝒟L,in ≃ 10−10 (
NDL

2 ) ( δCP

10−4

φ2
min

Λ2
CP ) ( αD

1.5 × 10−2 )
4

( λ
10−4 )

−3/2

( 5vD

φmin )
1/2

( φmin

2TRH )
3

✦ The asymmetry is shared with the dark baryon and SM via effective interactions:

𝒪D ∼
1

Λ2
D

pD pD χχ

Baryonic DM composed of  (  odd)f ℤ2

Mono-jet searches ( ) in 
colliders. Current constraint  TeV.  

For equilibrium at GeV  TeV. 

ud → χ̄d̄, dd → χ̄ū
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✦ The DM is self-interacting via the mediation of dark pions  with cross-section:πD
σpD pD

mpD

∼ 1 cm2/g (
ΛH,0

mpD
) (

ΛH,0

a−1
D )

2

( 150 MeV
ΛH,0 )

3

;  : scattering length . aD
Tulin Yu (2017) ; Kribs (2016)
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Sound wave

NanoGrav 15yr

β/H
* = 4, T

n /T
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β/H
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BBN
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DarkSide-50 (2023)

SuperCDMS
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PTA signal explanation together with DM and baryon asymmetry 

λφ = 1, η = 8, N = 10, NH = 5, NDB
= 10, n = 0.15, ΛH,0 = 0.8GeV



Conclusions

Thank you for your time! Questions?

✓ We provide a concrete scenario of cold darkogenesis where the baryon 
asymmetry and DM are produced utilizing the phase transition.

✓ Both secluded dark sector (together with SMBHB) and decaying dark sector 
can explain the observed signal. 

✓ Dark first-order phase transition is a promising interpretation of the observed 
PTA signal.

✓ Confining nearly conformal phase transition can realize a supercooled 
phase transition to explain the data. We analyzed it using the dilaton effective 
potential.

✓ The strong supercooling exponentially dilutes away pre-existing baryon 
asymmetry and DM, posing a challenge to this scenario.

✓ Future direct detection searches for DM and mono-jet searches at colliders 
will probe this model further.




