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[. Introduction

Pulsar Timing Arrays, nano-Hz Gravitational waves, and
supermassive black hole binaries (SMBHB)



The spectrum of gravitational waves

Gravitational waves: Small ripples over background spacetime generated by
varying quadrupole moment of the energy-momentum tensor.
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Pulsar Timing Array as GW detector

Pulsars are precise clocks.
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where v, is the angle between the two pulsars.
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Recent Pulsar Timing Array Observations

CPTA, EPTA, InPTA, NANOGrav, PPTA
have reported evidence for nano-Hz
stochastic gravitational waves.

Possible sources:

. Supermassive black hole binaries.

U Cosmological phase transitions.

. Defects: Cosmic strings, domain walls...
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But...one has to first get to a orbital separation of ~ 0.01 pc.
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Do SMBHBs merge 1n the

lifetime of the Universe?




II. Phase Transition Interpretation

First-order phase transition 1n a nearly conformal dark sector
and the production of gravitational waves

Fujikura, Girmohanta, Nakai and Suzuki [PLB 846, 138203 (2023)]
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Cosmological phase transitions

Phase transition (PT) occurs when there 1s a mismatch of true ground state of the
theory at zero and non-zero temperatures.
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I st order phase transition proceeds via nucleation, expansion and merger of bubbles of

the true ground state.
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The collision of bubbles and subsequent fluid flows produce shear stresses that
source GW.

Observed frequency f, is redshifted and is associated with the epoch when GW was
produced.
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Motivation

Phase transition provides a better fit to the data than SMBHB only expectation.
Observed: NANOGtrav 15 yr

=== Hellings—Downs spectrum

Peak frequency in the nHz implies a phase
transition temperature 7. ~ ©(0.1 — 1) GeV.

Power-law posterior —

= == Median power-law amplitude; y= 13/3 :

QCD phase transition 1s not first order.

(BSM) Supercooled electroweak phase

transition must have Ilj‘eﬁ > 10~* Hz.

(Ellis et. al. JCAP 04 (2019) 003)
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From the underlying field theory to GW spectra

Calculate the bubble Calculable Effective parameters

Extensive numerical
nucleation rate from the a: Latent heat released

simulations have given

bounce action Sg [: Bubble nucleation rate approximate analytical fit for
[~ T v,: Bubble wall speed the resulting GW spectrum
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Improvement of cosmic SMBH

merger expectation.
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inclusion of environmental effects required.
(see eg: Ellis et. al., arXiv: 2306.17021)
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Generically, confinement-deconfinement and chiral phase transitions in QCD-

like theories do not reach the strength required for the PTA signal explanation.
(See eg: Reichert et. al. JHEP 01 (2022) 003 ; Fujikura, Nakai, Sato, Wang (arXiv:2306.01305)

Valuable to find particle physics models that can generate the reported signal.

Utilize weakly coupled description of deconfining phase transition via AdS/CFT.
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The Model: Dark first-order deconfining phase transition

T® > T

4D conformal dark sector with large N
+

dark pure SU(Ny) Yang-Mills

SU(Ny;) confines = drives spontaneous

breaking of conformal invariance =— generates
dilaton (@) effective potential

7(D)
¢ Confinement-deconfinement phase transition

and generation of gravitational waves

Secluded dark sector Decaying dark sector

For eg: dark radiation final

Zz portal OViSOdaI'k
state.

Contributes to AN, and may

' Is not subject to AN
alleviate the Hubble tension.

- constraint.

Rattazzi+ 2002 ; Servant+ 2017
Dual 5D description

IR brane replaced by an event
horizon + SU(Ny) in the bulk

Dark SU(Ny) confinement
generates radion potential

Below TéD) : IR brane configuration
has lower free-energy

IR brane bubbles appear and a
strong first-order phase transition
proceeds.

R suw,)

confinement
generates

Veff (§0 )
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I1I. Cold Darkogenesis

Theoretical challenges to the phase transition interpretation and
possible resolution: Dark Matter and Baryon Asymmetry

Fujikura, Girmohanta, Nakai and Zhang, arXiv:2406.12956
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The model
Dilaton stabilization  Cold darkogenesis  Dark baryon number
Fields SU(Nwu) | SU2)p | U(1)p
Hp 1 2 0 = Spontaneous breaking of SU(2),
L, ;= (wl”) 1 2 1 = U(1)p anomalous under SU(2)p
| ¢2_’z 1 1 1 Neutron portal interaction for
X1.iy X2 - asymmetry sharing with SM
f; Ny 1 1/Nyu
_ __ = Baryon dark matter
f; Ny 1 —1/Nu

i: 1’.“’NDL ; J: 1,...,NDB /
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e With C & CP violation, ON = N-g — Ny > 0 and 0N < 0 winding
configurations evolve differently, generating a net dark lepton number &y ;..
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4 The asymmetry is shared with the dark baryon and SM via effective interactions:
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4+ Generated dark asymmetry &y ;, is stored in L, , y:
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4 The DM is self-interacting via the mediation of dark pions & with cross-section:

2 3
o A A 150 MeV
P20 1 em?/g HO H’lo © ; ap : scattering length .
mPD mPD Clﬁ AH’O

Tulin Yu (2017) ; Kribs (2016)
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Conclusions

v Dark first-order phase transition 1s a promising interpretation of the observed
PTA signal.

v Confining nearly conformal phase transition can realize a supercooled
phase transition to explain the data. We analyzed 1t using the dilaton effective
potential.

v Both secluded dark sector (together with SMBHB) and decaying dark sector
can explain the observed signal.

v The strong supercooling exponentially dilutes away pre-existing baryon
asymmetry and DM, posing a challenge to this scenario.

v We provide a concrete scenario of cold darkogenesis where the baryon
asymmetry and DM are produced utilizing the phase transition.

v Future direct detection searches for DM and mono-jet searches at colliders
will probe this model further.

Thank you for your time! Questions?





