

4AXIMILIANS

Cosmology from the Abundance of Massive Halos: SPT Clusters with DES and HST Weak Lensing

Sebastian Bocquet, LMU Munich

with Sebastian Grandis, Lindsey Bleem, Matthias Klein, Joe Mohr, Tim Schrabback and the South Pole Telescope (SPT) and Dark Energy Survey (DES) collaborations

Image credit: SPT 2024 winter-overs Josh + Kevin

Massive Halos \gtrsim 10¹⁴ Msun ... trace the large-scale structure

PASCOS Vietnam 2024

Last Journey (on Mira supercomputer) (Heitmann+) Sebastian Bocquet — LMU Munich

Cluster Cosmology The most massive collapsed objects $\gtrsim 10^{14} M_{\odot}$

Bullet Cluster. X-ray: NASA/CXC/CfA/M.Markevitch, Optical and lensing map: NASA/STScl, Magellan/U.Arizona/D.Clowe, Lensing map: ESO WFI PASCOS Vietnam 2024

- Composition
 - 85–90% dark matter
 - 10–15% ordinary matter, of which
 - ~ 75% (gravitationally heated) gas
 - ~ 25% galaxies/stars
- Somewhat arbitrary (but useful) definition
 - Halo = *entire* thing
 - Cluster = galaxies & gas (what we see)

Large-Scale Structure and Cosmology

Standard Model

PASCOS Vietnam 2024

Warm dark matter

Credit: Katrin Heitmann

Halo Mass Function dN(z)/dlnM — vanilla Λ CDM cosmology

Halo Mass Function d*N(z)*/dln*M* – now *w* = -1.1 (instead of -1)

Halo Mass Function Impact of changing dark energy equation of state parameter by 0.1

PASCOS Vietnam 2024

Bleem et al. (2015)

Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), J. Blakeslee (NRC Herzberg Astrophysics Program, Dominion Astrophysical Observatory), and H. Ford (JHU) http://www.spacete

PASCOS Vietnam 2024

"Halo Observable Function"

PASCOS Vietnam 2024

$$\frac{dN}{dobs} = \int dM P(obs \mid M) \frac{dN}{dM}$$

Modeling Framework Observable—Mass Relations

- The bigger a halo, the stronger its SZ, X-ray, optical, lensing signal
 - Supported by theory and numerical simulations
 - These are average relations there is intrinsic scatter, because no two objects are the same
- For the experts:
 - Halo morphology and evolution lead to correlated scatter among observables

Simulations (Angulo+12)

Mass Calibration

How do the observables relate to halo mass?

- We *could* use predictions from first principles (e.g., hydrostatic equilibrium) or numerical simulations
 - Systematically limited by uncertain astrophysics
- Weak-lensing-to-mass relation is known within few percents

Idealized (exaggerated) situation

Unlensed

Lensed

index.php?curid=4150002

(b) Tangential shear profile of SPT-CL J0254-5857.

Mass Calibration II. Weak Lensing **Robust observable – mass relations**

- We *could* use predictions from first principles (e.g., hydrostatic equilibrium) or numerical simulations
 - Systematically limited by uncertain astrophysics
- Weak-lensing-to-mass relation is known within few percents
 - Used to demonstrate that **hydrostatic mass** \neq **halo mass** \bullet
 - With lensing measurements of sample clusters, we empirically calibrate the observable – mass relations

SPT Clusters with DES and HST Weak Lensing. I. Cluster Lensing and Bayesian **Population Modeling of Multi-Wavelength Cluster Datasets**

S. Bocquet,^{1,*} S. Grandis,^{2,1} L. E. Bleem,^{3,4} M. Klein,¹ J. J. Mohr,^{1,5} M. Aguena,⁶ A. Alarcon,³ S. Allam,⁷ S. W. Allen,^{8,9,10} O. Alves,¹¹ A. Amon,^{12,13} B. Ansarinejad,¹⁴ D. Bacon,¹⁵ M. Bayliss,¹⁶ K. Bechtol,¹⁷ M. R. Becker,³ B. A. Benson,^{18,4,19} G. M. Bernstein,²⁰ M. Brodwin,²¹ D. Brooks,²² A. Campos,²³ R. E. A. Canning,²⁴ J. E. Carlstrom,^{18, 4, 25, 3, 26} A. Carnero Rosell,^{27, 6, 28} M. Carrasco Kind,^{29, 30} J. Carretero,³¹ R. Cawthon,³² C. Chang,^{18,4} R. Chen,³³ A. Choi,³⁴ J. Cordero,³⁵ M. Costanzi,^{36,37,38} L. N. da Costa,⁶ M. E. S. Pereira,³⁹ C. Davis,⁴⁰ J. DeRose,⁴¹ S. Desai,⁴² T. de Haan,^{43,44} J. De Vicente,⁴⁵ H. T. Diehl,⁷ S. Dodelson,^{23,46} P. Doel,²² C. Doux,^{20,47} A. Drlica-Wagner,^{18,7,4} K. Eckert,²⁰ J. Elvin-Poole,⁴⁸ S. Everett,⁴⁹ I. Ferrero,⁵⁰ A. Ferté,⁵¹ A. M. Flores,^{9,8} J. Frieman,^{7,4} J. García-Bellido,⁵² M. Gatti,²⁰ G. Giannini,³¹ M. D. Gladders,^{18,4} D. Gruen,¹ R. A. Gruendl,^{29,30} I. Harrison,⁵³ W. G. Hartley,⁵⁴ K. Herner,⁷ S. R. Hinton,⁵⁵ D. L. Hollowood,⁵⁶ W. L. Holzapfel,⁵⁷ K. Honscheid,^{58,59} N. Huang,⁵⁷ E. M. Huff,⁴⁹ D. J. James,⁶⁰ M. Jarvis,²⁰ G. Khullar,^{4,18} K. Kim,¹⁶ R. Kraft,⁶¹ K. Kuehn,^{62,63} N. Kuropatkin,⁷ F. Kéruzoré,³ S. Lee,⁴⁹ P.-F. Leget,⁴⁰ N. MacCrann,⁶⁴ G. Mahler,^{65,66} A. Mantz,^{8,9} J. L. Marshall,⁶⁷ J. McCullough,⁴⁰ M. McDonald,⁶⁸ J. Mena-Fernández,⁴⁵ R. Miquel,^{69,31} J. Myles,^{9,40,51} A. Navarro-Alsina,⁷⁰ R. L. C. Ogando,⁷¹ A. Palmese,²³ S. Pandey,²⁰ A. Pieres,^{6,71} A. A. Plazas Malagón,^{40,51} J. Prat,^{18,4} M. Raveri,⁷² C. L. Reichardt,¹⁴ J. Roberson,¹⁶ R. P. Rollins,³⁵ A. K. Romer,⁷³ C. Romero,⁷⁴ A. Roodman,^{40,51} A. J. Ross,⁵⁸ E. S. Rykoff,^{40,51} L. Salvati,^{75,76,77} C. Sánchez,²⁰ E. Sanchez,⁴⁵ D. Sanchez Cid,⁴⁵ A. Saro,^{78,77,76,79,80} T. Schrabback,^{81, 2} M. Schubnell,¹¹ L. F. Secco,⁴ I. Sevilla-Noarbe,⁴⁵ K. Sharon,⁸² E. Sheldon,⁸³ T. Shin,⁸⁴ M. Smith,⁸⁵ T. Somboonpanyakul,^{86,40} B. Stalder,⁶¹ A. A. Stark,⁶¹ V. Strazzullo,^{76,87,77} E. Suchyta,⁸⁸ M. E. C. Swanson,²⁹ G. Tarle,¹¹ C. To,⁵⁸ M. A. Troxel,³³ I. Tutusaus,⁸⁹ T. N. Varga,^{90, 5, 91} A. von der Linden,⁸⁴ N. Weaverdyck,^{11,41} J. Weller,^{5,91} P. Wiseman,⁸⁵ B. Yanny,⁷ B. Yin,²³ M. Young,⁹² Y. Zhang,⁹³ and J. Zuntz⁹⁴ (the DES and SPT Collaborations)

arXiv:2310:12213 — PRD accepted

Image credit: SPT 2018 winter-overs Adam & Joshua

SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos

S. Bocquet,^{1,*} S. Grandis,^{2,1} L. E. Bleem,^{3,4} M. Klein,¹ J. J. Mohr,^{1,5} T. Schrabback,^{2,6} T. M. C. Abbott,⁷ P. A. R. Ade,⁸ M. Aguena,⁹ A. Alarcon,³ S. Allam,¹⁰ S. W. Allen,^{11, 12, 13} O. Alves,¹⁴ A. Amon,^{15, 16} A. J. Anderson,¹⁰ J. Annis,¹⁰ B. Ansarinejad,¹⁷ J. E. Austermann,^{18,19} S. Avila,²⁰ D. Bacon,²¹ M. Bayliss,²² J. A. Beall,¹⁸ K. Bechtol,²³ M. R. Becker,³ A. N. Bender,^{3, 4, 24} B. A. Benson,^{24, 4, 10} G. M. Bernstein,²⁵ S. Bhargava,²⁶ F. Bianchini,^{11, 12, 13} M. Brodwin,²⁷ D. Brooks,²⁸ L. Bryant,²⁹ A. Campos,³⁰ R. E. A. Canning,³¹ J. E. Carlstrom,^{24,4,32,3,29} A. Carnero Rosell,^{33,9,34} M. Carrasco Kind,^{35,36} J. Carretero,²⁰ F. J. Castander,^{37,38} R. Cawthon,³⁹ C. L. Chang,^{4,3,24} C. Chang,^{24,4} P. Chaubal,¹⁷ R. Chen,⁴⁰ H. C. Chiang,^{41,42} A. Choi,⁴³ T-L. Chou,^{4,32} R. Citron,⁴⁴ C. Corbett Moran,⁴⁵ J. Cordero,⁴⁶ M. Costanzi,^{47,48,49} T. M. Crawford,^{4,24} A. T. Crites,⁵⁰ L. N. da Costa,⁹ M. E. S. Pereira,⁵¹ C. Davis,¹¹ T. M. Davis,⁵² J. DeRose,⁵³ S. Desai,⁵⁴ T. de Haan,^{55, 56} H. T. Diehl,¹⁰ M. A. Dobbs,^{41, 57} S. Dodelson,^{30, 58} C. Doux,^{25, 59} A. Drlica-Wagner,^{24, 10, 4} K. Eckert,²⁵ J. Elvin-Poole,⁶⁰ S. Everett,⁶¹ W. Everett,⁶² I. Ferrero,⁶³ A. Ferté,¹³ A. M. Flores,^{12,11} J. Frieman,^{10,4} J. Gallicchio,^{4,64} J. García-Bellido,⁶⁵ M. Gatti,²⁵ E. M. George,⁶⁶ G. Giannini,^{20,4} M. D. Gladders,^{24,4} D. Gruen,¹ R. A. Gruendl,^{35, 36} N. Gupta,⁶⁷ G. Gutierrez,¹⁰ N. W. Halverson,^{62, 19} I. Harrison,⁶⁸ W. G. Hartley,⁶⁹ K. Herner,¹⁰ S. R. Hinton,⁵² G. P. Holder,^{36, 70, 57} D. L. Hollowood,⁷¹ W. L. Holzapfel,⁷² K. Honscheid,^{73, 74} J. D. Hrubes,⁴⁴ N. Huang,⁷² J. Hubmayr,¹⁸ E. M. Huff,⁶¹ D. Huterer,¹⁴ K. D. Irwin,^{13,12} D. J. James,⁷⁵ M. Jarvis,²⁵ G. Khullar,^{4, 24} K. Kim,²² L. Knox,⁷⁶ R. Kraft,⁷⁵ . Krause,⁷⁷ K. Kuehn,^{78, 79} N. Kuropatkin,¹⁰ F. Kéruzoré,³ O. Lahav,²⁸ A. T. Lee,^{72,80} P.-F. Leget,⁸¹ D. Li,^{18,13} H. Lin,¹⁰ A. Lowitz,²⁴ N. MacCrann,⁸² G. Mahler,^{83,84} A. Mantz,^{11,12} J. L. Marshall,⁸⁵ J. McCullough,⁸¹ M. McDonald,⁸⁶ J. J. McMahon,^{4,32,24} J. Mena-Fernández,⁸⁷ F. Menanteau,^{35,36} S. S. Meyer,^{4,32,24,29} R. Miquel,^{88,20} J. Montgomery,⁴¹ J. Myles,⁸⁹ T. Natoli,^{24,4} A. Navarro-Alsina,⁹⁰ J. P. Nibarger,¹⁸ G. I. Noble,⁹¹ V. Novosad,⁹² R. L. C. Ogando,⁹³ Y. Omori,⁴ S. Padin,⁹⁴ S. Pandey,²⁵ P. Paschos,²⁹ S. Patil,¹⁷ A. Pieres,^{9,93} A. A. Plazas Malagón,^{81,13} A. Porredon,⁹⁵ J. Prat,^{24,4} C. Pryke,⁹⁶ M. Raveri,⁹⁷ C. L. Reichardt,¹⁷ J. Roberson,²² R. P. Rollins,⁴⁶ C. Romero,⁷⁵ A. Roodman,^{81,13} J. E. Ruhl,⁹⁸ E. S. Rykoff,^{81,13} B. R. Saliwanchik,⁹⁹ L. Salvati,^{100,101,102} C. Sánchez,²⁵ E. Sanchez,¹⁰³ D. Sanchez Cid,¹⁰³ A. Saro,^{104,102,101,105,106} K. K. Schaffer,^{4,29,107} L. F. Secco,⁴ I. Sevilla-Noarbe,¹⁰³ K. Sharon,¹⁰⁸ E. Sheldon,¹⁰⁹ T. Shin,¹¹⁰ C. Sievers,⁴⁴ G. Smecher,^{41,111} M. Smith,¹¹² T. Somboonpanyakul,¹¹³ M. Sommer,⁶ B. Stalder,⁷⁵ A. A. Stark,⁷⁵ J. Stephen,²⁹ V. Strazzullo,^{101,102} E. Suchyta,¹¹⁴ G. Tarle,¹⁴ C. To,⁷³ M. A. Troxel,⁴⁰ C. Tucker,⁸ I. Tutusaus,¹¹⁵ T. N. Varga,^{116, 5, 117} T. Veach,¹¹⁸ J. D. Vieira,^{36, 70} A. Vikhlinin,⁷⁵ A. von der Linden,¹¹⁰ G. Wang,³ N. Weaverdyck,^{14,53} J. Weller,^{5,117} N. Whitehorn,¹¹⁹ W. L. K. Wu,¹³ B. Yanny,¹⁰ V. Yefremenko,³ B. Yin,³⁰ M. Young,⁹¹ J. A. Zebrowski,^{4, 24, 10} Y. Zhang,⁷ H. Zohren,⁶ and J. Zuntz¹²⁰ (the SPT and DES Collaborations)

arXiv:2401.02075 — PRD accepted

The South Pole Telescope (SPT)

10-meter sub-mm quality wavelength telescope

90, 150, 220 GHz and 1.6, 1.2, 1.0 arcmin resolution

2007: SPT-SZ

960 detectors 90,150,220 GHz

2012: SPTpol

1600 detectors 90,150 GHz +Polarization

2017: SPT-3G

~15,200 detectors 90,150,220 GHz +Polarization

PASCOS Vietnam 2024

Find clusters Sunyaev-Zel'dovich (SZ) Effect

PASCOS Vietnam 2024

Clean and well-understood selection of cluster candidates

Out to highest redshifts where clusters exist!

SPTpol @ 150 GHz

Why use SZ-selected clusters? Three approaches: X-ray, Optical, SZ

PASCOS Vietnam 2024

How to confirm SZ candidates?

Measure richness (≅number of cluster member galaxies) and redshift

Get rid of chance associations (with SPT noise fluctuation)

Calibrate probability of chance association by measuring (λ , *z*) at random locations

Establish $\lambda_{min}(z)$ to achieve target purity (> 98%)

(Klein+18,23; Bleem+24)

The Dark Energy Survey 5000 deg² galaxies & weak lensing

Catalog of SPT-selected cluster candidates needs

- Confirmation
- Cluster redshifts
- Weak-lensing (mass) measurement
 all of which DES was designed for
 (here we use DES Year 3 data = Y3)

SPT(SZ+pol) Cluster Sample 1,005 confirmed clusters above *z* > 0.25 over 5,200 deg²

SPT Clusters and the Dark Energy Survey 3,600 deg² overlap

PASCOS Vietnam 2024

Bleem+15,20,24 Klein+24 Bocquet+24II

Right Ascension

Cluster lensing analysis Shear profiles

- Almost 700 SPT clusters (redshift 0.25–0.95) with DES Y3 shear
 - For the experts:
 - Analysis uses individual cluster shear profiles (Stacks are shown for visualization purposes)
 - Same source selection as in DES Y3 3x2pt
 - Same photo-*z* and shear calibrations
 - Radial range: $0.5 < r [h^{-1}Mpc] < 3.2 / (1 + z)$ (avoid cluster centers, stay in 1-halo term regime)
- 39 high-redshift clusters (redshift 0.6-1.7) with the Hubble Space Telescope Schrabback+18, Schrabback, Bocquet+21, Zohren, Schrabback, Bocquet+22

PASCOS Vietnam 2024

Likelihood Function Bayesian Population Modeling

Let us generate a cluster dataset!

Differential multi-observable cluster abundance

$$\frac{d^4 N(\boldsymbol{p})}{d\xi \, d\lambda \, d\boldsymbol{g}_{\mathrm{t}} \, dz} = \int \dots \int dM \, d\zeta \, d\tilde{\lambda} \, dM_{\mathrm{WL}} \, d\Omega_{\mathrm{s}} P(\xi \,|\, \zeta) P(\lambda \,|\, \tilde{\lambda}) P(\boldsymbol{g}_{\mathrm{t}} \,|\, M_{\mathrm{WL}}) \frac{P(\zeta, \lambda, M_{\mathrm{WL}} \,|\, M, z, \boldsymbol{p})}{dM \, dV} \frac{d^2 N(\boldsymbol{p})}{dz \, dz} \frac{d^2 V(z)}{dz \, dz}$$
marginalize over
latent variables

PASCOS Vietnam 2024

Likelihood Function II Poisson likelihood function: $\mathscr{L}(k \text{ events } | \text{ rate } \mu) \propto \mu^k e^{-\mu} \Rightarrow \ln \mathscr{L} = k \ln(\mu) - \mu$

PASCOS Vietnam 2024

 $\int \dots \int d\xi \, d\lambda \, dg_{t} \, dz \, \frac{d^{4}N(p)}{d\xi \, d\lambda \, dg_{t} \, dz} \Theta_{s}(\xi, \lambda, z) + \text{const.}$

PASCOS Vietnam 2024

Bocquet+24I

Pipeline Verification

using mock datasets created from the model

- Create synthetic clusters from the halo \bullet mass function using observable — mass relations
- Analyze several statistically independent mock realizations
- Pipeline recovers input values
- We correctly implemented the analysis framework!

Robustness Tests during Blind Analysis Phase All chains were blinded by applying the same unknown parameter offset

full sar	mple, fully marginalized -	•	
Systematics	full sample -	•	
full sa	ample, HMF uncertainty -	-	
Cluster sub-samples	0.25 < z _{cluster} < 1 -	-	
0.25	$\delta < z_{\text{cluster}} < 1, \ \zeta_{\text{min}} : 1 \rightarrow 2 - 1$	-	
	0.25 < <i>z</i> _{cluster} < 1, <i>ξ</i> > 5 -		
DES lensing $0.25 < z_{cluster} < 1$, DES WL boost: DNF \rightarrow BPZ -			
0.25 < <i>z</i> _{cluster} < 1, DES W	VL center: MCMF \rightarrow SPT -	-	
$0.25 < z_{\text{cluster}} < 1$, DES WL r_{n}	$\min: 500 \rightarrow 800[h^{-1}kpc] - $		

PASCOS Vietnam 2024

26

Does the model describe the data? Binned and stacked data for visualization

Mean recovered model (and uncertainties) from full analysis. No significant signs of problems.

ACDM with massive neutrinos

- No evidence for " S_8 tension" with Planck (1.1 σ)
- In combination with Plan

Bocquet+24II SPT clusters + WL SPT(SZ+pol) clusters Planck18 + (DES Y3 + HST) WL SPT clusters + WL + *Planck*18 ACT DR-6 lensing Planck18 TTTEEE DES Y3 3x2pt | BAO ----0.90 0.85 σ_8 0.80 0.75 [0.3 0.2 0.1 0.3 0.4 0.1 0.2 0.3 0.25 0.30 0.35 0.75 0.80 0.85 $\sum m_{v}$ [eV] Ω_{m} Ω_{m} σ_8

• Competitive constraints, especially on $S_8^{\text{opt}} \equiv \sigma_8 \left(\Omega_{\text{m}}/0.3\right)^{0.25}$

nck
$$\sum m_{\nu} < 0.18 \,\mathrm{eV} \,(95 \,\% \,\mathrm{C} \,. \,\mathrm{L})$$

Sebastian Bocquet — LMU Munich

28

Tracing the Growth of Structure Phenomenological test

- Five bins in redshift with equal number of clusters
- Fit for independent amplitudes $\sigma_8(z)$
- With loose prior on Ω_m from the sound horizon at recombination θ_*
- Good agreement with ΛCDM model and *Planck* parameters from *z* = 0.25 to *z* = 1.8

Sebastian Bocquet — LMU Munich

29

Outlook select work by PhD students

Mazoun, Bocquet, Garny, Mohr, Rubira, Vogt 24

Asmaa Mazoun

Interacting dark sector models

Analysis of SPT+DES dataset ongoing (Mazoun+ in prep.)

PASCOS Vietnam 2024

 $M[h^{-1}M_{\odot}]$

Sophie Vogt

FIG. 1. The critical overdensity δ_{crit} for spherical collapse in f(R) gravity (Eq. (12)) for different values of $\log_{10} |f_{R0}|$ at collapse redshift $z_c = 0$ in colored solid lines. The dashed black line represents δ_{crit} in a corresponding GR cosmology (Eq. (13)).

f(R) and nDGP models

Analysis of SPT+DES dataset done (Vogt+ in prep.)

Outlook: Joint Constraints SPT Cluster Abundance + DES 3x2 pt

- Joint analysis
 - Cosmological covariance
 - Shared (lensing) systematics
 - Addressed w/ Chun-Hao To, Elisabeth Krause, Sebastian Grandis
- Expect powerful constraints on z < 2 large-scale structure
- Ideal complement to high-redshift CMB measurements by Planck

The South Pole Telescope (SPT)

10-meter sub-mm quality wavelength telescope
90, 150, 220 GHz and
1.6, 1.2, 1.0 arcmin resolution

2007: SPT-SZ

960 detectors 90,150,220 GHz

2012: SPTpol

1600 detectors 90,150 GHz +Polarization

2017: SPT-3G

~15,200 detectors 90,150,220 GHz +Polarization

The 10,000 deg² SPT-3G Survey(s)

Survey	Area	Years observed	Noise level (T)				
	$[\deg^2]$		[μ K-arcmin]				
			95 GHz	150 GHz	220 GHz	Coadded	
SPT-3G Main	1500	2019-2023, 2025-2026	2.5	2.1	7.6	1.6	
SPT-3G Summer	2600	2019-2023	8.5	9.0	31	6.1	
SPT-3G Wide	6000	2024	14	12	42	8.8	

Wide is still 2-3 times deeper than SPT-SZ!

Slide from Lindsey Bleem

Summary

- Cluster abundance as a cosmological probe
- SZ-selection + weak-lensing mass calibration • = excellent control over systematics
- Latest analysis of SPT (SZ+pol) clusters with • DES Y3 + HST lensing is competitive and compatible with other probes
- Next few years will be spectacular (SPT-3G, • advACT, SO, eROSITA, DES Y6, KiDS, HSC, Euclid, LSST, CMB-S4, etc.)

Image credit: CTIO/NOIRLab/NSF/AURA/D. Munizaga

