

Search for Baryogenesis and Dark Matter in B-meson decays at BABAR

PASCOS 2024, ICISE, Quy Nhon, Vietnam, July 10, 2024 Francesco Forti, INFN and University, Pisa On behalf of the BABAR Collaboration

F.Forti, DM&Baryogenesis

Outline

- B mesogenesis:
 - Baryogenesis and Dark Matter from B Mesons
- Experimental signals at colliders
- The Babar experiment and dataset
- The $B^0 \to \psi_D \Lambda$ and $B^+ \to \psi_D p$ analyses
- Results and interpretation
- Conclusion and perspectives

Standard Model Incompleteness

- Dark Matter
- Baryon Asymmetry of the Universe (BAU)
- Origins of neutrino mass
- Existence of Dark Energy
- Fine tuning requirements (e.g. Higgs mass)
- Gravity at the quantum scale

Standard Model Incompleteness

Dark Matter

Jul 10, 2024

• Baryon Asymmetry of the Universe (BAU)

Zwicky, AcHPhys 6 (1933); et seq

• Dark matter existence well established from astrophysical evidence, but its nature is unknown $\eta = \frac{N_B}{N_{\nu}} \approx \frac{N_B - N_{\bar{B}}}{N_R + N_{\bar{R}}}$

24

(1967)

- Baryogenesis is required to generate the BAU
- Sakharov conditions: <u>Sakharov, A D, JETP 5 (1967) 24</u>
 - Baryon number violation
 - C and CP violation
 - Deviation from thermal equilibrium

Canetti et al., NJOP 14 (2012) 095012 SM measured parameters are

quantitatively insufficient to explain the level of BAU

Baryogenesis and Dark Matter from *B* Mesons: *B* Mesogenesis

• New concept:

Elor, Escudero, Nelson, PRD 99 (2019) 035031

- There exist non-SM dark baryons and anti-baryons
- Baryon number conservation counts both SM and dark (anti)baryons
- B meson can decay as $B \rightarrow B + \psi_D + M$
- SM baryon $\mathcal B$ + neutral dark anti-baryon ψ_D + additional mesons $\mathcal M$
- CP violation from $B^0 \overline{B}^0$ oscillations generates a matter-antimatter asymmetry, which can originate from SM or BSM processes
- B^0 decays into baryons slightly dominate over $\overline{B}{}^0$ decays into antibaryons
 - Yields net excess of baryons in the visible sector and excess anti-baryons in the dark sector
- Baryon number in the whole universe is conserved, but a net excess is present in the visible sector

Baryogenesis and Dark Matter from *B* Mesons: *B* Mesogenesis

- "The produced baryon asymmetry will be directly related to the leptonic charge asymmetry in neutral B decays: an experimental observable: A_{SL}^q
- Dark matter is stabilized by an unbroken discrete symmetry, and proton decay is simply evaded by kinematics" Alonso-Alvarez, Elorand, Escudero, PRD 104, (2021) 035028

BABAR @ PEP II

- Running from 1999 to 2008
- Asymmetric collider @ $\sqrt{s} = 10^{\circ}$ GeV at the Y(4S) resonance
 - 9 GeV electrons on 3 GeV posit
- \bullet Result based on 398.5 fb $^{-1}$
 - $4.4 \times 10^8 \ B\overline{B}$
- Additional 32.5 fb⁻¹ used as control and analysis strategy optimization sample (excluded from final results)

- Hadronic recoil tagging method used to reconstruct event
 - B-tag = Fully reconstructed Standard Model decay mode
 - B-sig = Potential for signal, search here for missing mass
- Constraint on B-tag:

INFN

-2

Selection criteria

- For the *p* channel:
 - BABAR proton PID can be used to identify proton candidate;
 - B-sig must have + charge and only one charged particle
- For the Λ channel:
 - two charged tracks required on the signal side;
 - one Λ candidate in the B-sig, with $\Lambda \rightarrow p\pi^-$;
 - significance of the Λ decay length
 - $(flight length)/\sigma > 1.0$
 - kinematic fit of Λ reconstruction: $\chi^2 \leq 100$
- For both channels:
 - against background with Boosted • Optimiza Decisior
 - Using ki

Lical and event shape variables

0.01

10⁵

FIG. Missing 4. applied for a sim

cc

uū.

B⁺E

Jul 10, 2024

Extraction of results

- Montecarlo
 - Standard model background (BB and continuum)
 - Signal generated with ψ_D mass varying between 1 and 4.2 GeV
 - Extract efficiency and resolution from fits to signal MC
- Estimate signal and backgrounds in data from MC study with corrections to MC from datadriven studies

$$m_{\psi_D} = m_{\text{miss}} = \sqrt{1}$$

3.5

m_{ψp} [GeV/c²]

3.0

INFN

Jul 10, 20~

13

World-leading result for $B^0 \rightarrow \psi_D + \Lambda$ improving on Belle result and further constraining models

First direct search for $B^+ \rightarrow \psi_D + p$ places tight constraints on the specified model of Dark Matter + Baron Asymmetry of the Universe

INFN Jul 10, 2024

White State

F.Forti, DM&Baryogenesis

Interpretation for SUSY with R-parity viola u/c $\tilde{\chi}_1^0$ d/s• Neutralino and baryon u/c $\lambda \tilde{\chi}_1^0$ \tilde{u}/\tilde{c} • First limits for this SUSY model for λ_{ij3} Λ_{ii3} *ij*3 both channels u/du/du/d $\rightarrow \widetilde{\chi_0} + \Lambda$ $B^+ \rightarrow \widetilde{\chi_0} + p$ 4.×10⁻¹ 10 $\lambda_{113}^{''}/m_{\tilde{q}}^2(GeV^{-2})$ BABAR Experiment (90% C.L.) 3.×10⁻⁶ -2] $\lambda_{123}''/m_{\tilde{q}}^2$ [GeV 10-6 2.×10-0 1.×10-6 10-7

0.5

1.0

1.5

2.0

Phys.Rev.Lett. 131 (2023) 20, 201801

2.5

3.0

3.5

5 4.0 m_{x̃o}(GeV/c²)

Jul lu, sust

INFN

1.0

1.5

2.0

2.5

JHEP 02 (2023) 224

 $m_{\tilde{\chi}_1^0}$ [GeV]

3.0

3.5

4.0

15

Conclusions and next steps

- BABAR Published in 2023 limits on
 - $B^0 \rightarrow \psi_D \Lambda$ <u>PRD 107 (2023) 092001</u>: improving Belle result
 - $B^+ \rightarrow \psi_D p$ <u>PRL 131 (2023) 201801</u>: first measurement
- B-Mesogenesis parameter space vastly reduced, almost excluded for some operators
- Must explore additional operators to fully exclude this B-Mesogenesis model
- Expect results from Belle II high luminosity running
- Coming soon from BABAR: $B^0 \rightarrow \psi_D + \pi^- + \Lambda_c^+$
- Still producing results after all these years

(

