

Physics Beyond the Standard Model with the NA62 experiment at CERN

Lubos Bician

Charles University in Prague

On behalf of the NA62 Collaboration

July 10, 2024

Co-funded by the European Union

Kaon Experiments at the CERN SPS

► H⁻ (hydrogen anions) ► p (protons) ► ions ► RIBs (Radioactive Ion Beams) ► n (neutrons) ► p (antiprotons) ► c (electrons) ► µ (muons)

LHC - Large Hadron Collider // SFS - Super Proton Synchrotron // FS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Resard // AWAKE - Advanced WAKefield Experiment // BOLDE - Isotope Separator OnLine // REX/HIF-ISOLDE - Kadloactive Experiment/High Intensity and Energy ISOLDE // MEDICS // LER - Low Energy Ion Ring // LINAC - LINear Accelerator // n_1OF - Neutrons Time Of Flight // MRadMat - High-Radiadion to Materials // Neutrino Pationm

NA62: ~ 200 participants, ~ 30 institutes

Main goal of the NA62 experiment:

• NA31: 1980s, *beam:* K_L/K_S

- First evidence of direct CPV
- NA48: 1997–2001, *beam:* K_L/K_S
 - Discovery of direct CPV
- NA48/1: 2002, *beam:* K_S/hyperons
 - Rare decay studies
- NA48/2: 2003–2004, *beam:* K⁺/K⁻
 - Precision measurements
- NA62-R_K: 2007–2008, *beam:* K⁺/K⁻

• $R_K = \Gamma(K_{e2}) / \Gamma(K_{\mu 2})$

- NA62: since 2015, *beam:* K⁺ 2015: commissioning run 2016-2018: NA62 Physics Run 1 2021-ongoing: NA62 Physics Run 2
- Measurement of the branching fraction of very rare ($\mathcal{B}_{\pi\nu\nu} \approx 10^{-10}$) decay $K^+ \to \pi^+ \nu \bar{\nu}$
 - Result from 2016-2018 data set published in [JHEP06 (2021) 093], 2021-2022 analysis ongoing

Outline of the Talk

Searches for BSM physics in data from kaon runs:

- Search for $K^+ \to \mu^- \nu e^+ e^+$ [Phys. Lett. B 838 (2023) 137679]
 - Forbidden within the SM by either Lepton Number (LN) or Lepton Flavour (LF) conservation, depending on the neutrino flavour
 - Majorana neutrinos (ALPs or Z' particles) could mediate LNV (LFV) processes
- Searches for $K^+ \rightarrow \pi^0 \pi \mu e$ [New, to be published]
 - Forbidden within the SM by either LN or LF conservation, depending on the charge of the pion
- Search for $K^+ \to \pi^+ e^+ e^- e^+ e^-$ [Phys.Lett.B 846 (2023) 138193]
 - As 5-body decay: SM predicted branching fraction $\mathcal{B}(K_{\pi 4e}) = (7.2 \pm 0.8) \times 10^{-11}$
 - Short-lived QCD axion: $K^+ \to \pi^+ aa$, $a \to e^+ e^-$
 - Potential explanation of the "17 MeV anomaly" in de-excitations of ⁸Be, ⁴He, and ¹²C nuclei
 - Cascade process involving scalar S and dark photon $A': K^+ \to \pi^+S, S \to A'A', A' \to e^+e^-$
 - Allowed only if $m_S \ge 2m_{A'}$

Searches for BSM physics in data from beam-dump runs:

- Searches for $A' \rightarrow l^+l^-$ [JHEP 09 (2023) 035], [2312.12055]
- Searches for Dark Scalars and ALPs [Talk at Moriond EW 2024]

NA62: Beam and Detector in Kaon Runs

Main subdetectors:

- Beam tracker: GTK
- Kaon tagger: KTAG ($\sigma_t \sim 70 \text{ ps}$)
- Downstream tracker: $(\pi/\mu/e)$: Straw $\sigma_p/p = 0.3\% \bigoplus 0.005\% \cdot p$ [GeV/c]
- Photon veto detectors: LAV, IRC, SAC
- Cherenkov counter: RICH

Beam parameters:

- Beam momentum: 75 GeV/c ($\pm 1\%$)
- Nominal rate: 750 MHz
- Positive beam: $\sim 6\% \text{ K}^+$

- Trigger and timing: CHOD ($\sigma_t \sim 1$ ns), NA48-CHOD ($\sigma_t \sim 200$ ps)
- Electromagnetic calorimeter: LKr $\sigma_E/E = 4.8\%/\sqrt{E} \bigoplus 11\%/E \bigoplus 0.9\%$, [E] = GeV
- Hadronic calorimeters: MUV1,2
- Muon detector: MUV3 ($\sigma_t \sim 500 \text{ ps}$)

Search for $K^+ \rightarrow \mu^- \nu e^+ e^+$

Data sample:

- Full NA62 Run 1 (2016 2018)
- Normalisation decay channel: $K^+ \rightarrow \pi^+ e^+ e^-$
- Employed blind analysis technique

Common selection criteria:

- Three-track vertices of Straw tracks with $p \in [6,44]~{\rm GeV}/c$
- Particle identification using LKr energy *E*, Straw track momentum *p*, and muon detector MUV3:
 - π : E/p < 0.85, no in-time signal in MUV3
 - μ : E/p < 0.2, in-time signal in MUV3
 - $e: E/p \in [0.9, 1.1]$

$K_{\pi ee}$ selection criteria:

- $|p_{\text{vertex}} p_{\text{beam}}| < 2 \text{ GeV}/c$
- $m(ee) > 140 \text{ MeV}/c^2$
- $m(\pi ee) \in [470, 505] \text{ MeV}/c^2$

$K_{\mu\nu ee}$ selection criteria:

- $p_{\text{beam}} p_{\text{vertex}} > 10 \text{ GeV}/c$
- $m_{\text{miss}}^2 = (P_K P_\mu P_{e1} P_{e2})^2 \in [-0.006, 0.004] \text{ GeV}^2/c^4$

Search for $K^+ \rightarrow \mu^- \nu e^+ e^+$

 ${\cal B}({
m K}^+ o \mu^-
u {
m e}^+ {
m e}^+) < 8.1 imes 10^{-11}$ @ 90% CL

Searches for $K^+ \rightarrow \pi^0 \pi \mu e$

Data sample:

- Full NA62 Run 1 (2016 2018)
- Normalisation decay channel: $K^+ \rightarrow \pi^+ e^+ e^-$
 - Identical as in the $K^+ \to \mu^- \nu e^+ e^+$ analysis
- Employed blind analysis technique

Common selection criteria:

- Three-track vertices of Straw tracks with $p \in [6, 65] \text{ GeV}/c$
- Particle identification using LKr energy *E*, Straw track momentum *p*, and muon detector MUV3:
 - π : E/p < 0.85, no in-time signal in MUV3
 - μ : E/p < 0.2, in-time signal in MUV3
 - $\bullet \ e : E/p \in [0.9, 1.1]$

$K_{\pi\pi\mu e}$ selection criteria:

- The three vertex tracks are π , μ , e
- One in-time π^0 is reconstructed from a pair of photons in LKr
- Neutral vertex is reconstructed assuming the photons come from a π^0 decay
- The charged and neutral vertices are compatible within 8 m in Z
- Reconstructed mass $m(\pi^0\pi\mu e)\in[486,502]~{\rm MeV}/c^2$

Search for $K^+ \rightarrow \pi^0 \pi^- \mu^+ e^+$

Control selection For background normalisation and validation No $\Delta p, p_T$, LAV veto, and $m(\pi \pi \mu e)$ cut inverted

Signal selection (N $_{ m B}=0.33\pm0.07$) No candidate observed in the signal region

Search for $K^+ \rightarrow \pi^0 \pi^+ \mu^- e^+$

 $\label{eq:control selection} \begin{array}{l} \mbox{For background normalisation and validation} \\ \mbox{No }\Delta {\bf p}, {\bf p_T}, \mbox{LAV veto, and } {\bf m}(\pi\pi\mu{\bf e}) \mbox{ cut inverted} \end{array}$

Signal selection ($N_B = 0.004 \pm 0.003$) No candidate observed in the signal region

Search for $K^+ \rightarrow \pi^0 \pi^+ \mu^+ e^-$

 $\label{eq:control selection} \begin{array}{l} \mbox{For background normalisation and validation} \\ \mbox{No }\Delta {\bf p}, {\bf p_T}, \mbox{LAV veto, and } {\bf m}(\pi\pi\mu{\bf e}) \mbox{ cut inverted} \end{array}$

Signal selection (N $_{ m B}=0.29\pm0.07$) No candidate observed in the signal region

Search for $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$

Data sample:

- NA62 Run 1 (2017 2018)
- Normalisation decay channel: K⁺ → π⁺π⁰_{DD} (identical final state to signal candidates)
- Employed blind analysis technique

Common selection criteria:

- Five-track vertices of Straw tracks, $p \in [5, 45] \text{ GeV}/c$
- Particle identification is based on event kinematics:
 - Three options for π^+ mass assignment are tested
 - The one giving minimal $|m_{\pi 4e} m_K|$ is chosen

$K_{2\pi DD}$ selection criteria:

• $|m(4e) - m_{\pi^0}| < 10 \text{ MeV}/c^2$

$K_{\pi 4e}$ selection criteria:

- $|m(4e) m_{\pi^0}| > 10 \text{ MeV}/c^2$
- $m_{\text{miss}}^2 = (P_K P_\pi)^2 > 0$
- $|m_{\text{miss}} m_{\pi^0}| > 40 \text{ MeV}/c^2$
- $p_{\pi} > 10 \; \mathrm{GeV}/c$

Resonant $K_{\pi 4e}$ selection criteria:

- Both $X \to e^+e^-$ hypotheses are tested, and the one with smaller discriminant D is chosen, $D = (m_{ee1} - m_{ee2})^2 / \sigma_{\Delta m_{ee}}^2$
- For each mass hypothesis m_X , require $|m_{ee} - m_X| < 0.02m_X$, where $m_{ee} = (m_{ee1} + m_{ee2})/2$

Search for $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$

Search for $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$

 $\mathcal{B}(K_{\pi 4 e}) < 1.4 \times 10^{-8}$ @ 90% CL; ULs @ 90% CL on resonant $K_{\pi 4 e}$ processes

NA62: Beam and Detector in Beam Dump Runs

Main subdetectors:

- Downstream tracker: $(\pi/\mu/e)$: Straw $\sigma_p/p = 0.3\% \bigoplus 0.005\% \cdot p[\text{GeV}/c]$
- Photon veto detectors: LAV, IRC, SAC
- Cherenkov counter: RICH

NA62 beam-dump mode:

- The Be target is lifted; the protons hit directly the 3.2 m Cu-Fe dump
- Primary proton beam operating at $1.7 \times$ nominal intensity
- Upstream detectors KTAG, GTK, CHANTI are not used

Data sample:

- Beam dump data from 2021
- Collected $(1.4 \pm 0.28) \times 10^{17} \text{ POT}$
- Trigger and timing: CHOD ($\sigma_t \sim 1$ ns), NA48-CHOD ($\sigma_t \sim 200$ ps)
- Electromagnetic calorimeter: LKr $\sigma_E/E = 4.8\%/\sqrt{E} \bigoplus 11\%/E \bigoplus 0.9\%$, [E] = GeV
- Muon detector: MUV3 ($\sigma_t \sim 500 \text{ ps}$)

Searches for $A' \rightarrow l^+ l^-$

Dark Photon A' model:

- New vector field $F'_{\mu\nu}$ feebly interacting with SM fields
- Free parameters: mass $m_{A'}$, coupling ε
- For $m_A < 600 \text{ MeV}/c^2$, $A' \rightarrow l^+ l^-$ decays dominate

Signal selection:

- Employed blind analysis technique (CRs and SR)
- *l*⁺*l*⁻ vertex within NA62 fiducial volume
- l^{\pm} PID using LKr and MUV3
- No in-time activity in LAVs or ANTI0
- Primary vertex close to *p*⁺ beam impact point

Searches for $A' \rightarrow l^+ l^-$

Excluded new regions in the $\mathbf{m}_{\mathbf{A}'}, \varepsilon$ parameter space

Searches for Dark Scalar or ALP via Hadronic Decay Modes

BSM physics models:

- New scalar S or pseudoscalar a coupled with SM fields
- Free parameters: masses and coupling constants

Signal selection:

- Employed blind analysis technique (CRs and SR)
- h^+h^- vertex within NA62 fiducial volume
- h[±] PID using calorimeters, RICH, and MUV3
- Neutral particles (γ, η, π^0) reconstructed in LKr
- No in-time activity in LAVs, SAV, or ANTI0
- Primary vertex close to p⁺ beam impact point

Studied modes:

DS	ALP
$\pi^+\pi^-$	$\pi^+\pi^-\gamma$
	$\pi^+\pi^-\pi^0$
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$\pi^+\pi^-\pi^0\pi^0$
	$\pi^+\pi^-\eta$
K^+K^-	
	$K^+K^-\pi^0$

- DS: Dark Scalar S
- ALP: Axion-Like Particle a

Searches for Dark Scalar or ALP via Hadronic Decay Modes

Excluded new regions in the mass-coupling parameter space

Summary

Searches for BSM physics in kaon mode:

- Presented ULs on $K^+ \rightarrow \mu^- \nu e^+ e^+$, $K^+ \rightarrow \pi^0 \pi \mu e$, and $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$ processes
- The result of $K_{\mu\nu ee}$ search improves the previous UL by a factor of 250
- NA62 performed the first search for the $K^+ \rightarrow \pi^0 \pi \mu e$ and $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$ decays
- Other searches for rare and forbidden processes are ongoing

Searches for BSM physics in beam-dump mode:

- Presented results obtained from data collected in 2021
- Extended 90% CL exclusion regions in the mass-coupling parameter space

NA62 is approved to take data until the CERN Long Shutdown 3 (LS3)

Stay tuned for new results!

Acknowledgement

The project "MSCA Fellowships CZ – UK2" (reg. n. CZ.02.01.01/00/22_010/0008115) is supported by the Programme Johannes Amos Comenius.

