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• We consider the SM + a single SU(2) multiplet χ of complex scalar fields.

• We consider the weak isospin J of that multiplet, up to J = 7/2.

• We allow the multiplet to have arbitrary weak hypercharge Y .

We have the 4 multiplets, where χ has n = 2J + 1 components χI (I is the third component of isospin)

H =

(
a
b

)
, H̃ =

(
b∗

−a∗

)
, χ =

 χJ

...
χ−J

 , χ̃ =

 χ∗
−J
...

(−1)2J χ∗
J

 .

Then, the potential V = V2 + V4 with V2 = −µ2
1F1 + µ2

2F2 and

V4 =
λ1

2
F 2
1 + λ3F1F2 + λ4F4 + terms four-linear in the χI ,

where invariants are defined following

F1 ≡
(
H ⊗ H̃

)
1
= |a|2 + |b|2 , F2 ≡ (χ⊗ χ̃)1 =

J∑
I=−J

|χI |2

F4 ≡
|a|2 − |b|2

2

J∑
I=−J

I |χI |2 +
z + z∗

2
, z ≡ ab∗

J∑
I=1−J

χ∗
I χI−1

√
J2 − I 2 + J + I .
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Masses
From the previous equations the mass-squared of the scalar χI is

m2
I = µ2

2 +

(
λ3 −

λ4

2
I

)
|v |2 .

This implies that the difference between the masses-squared of χI and χI+1 is

∆m2 =

∣∣λ4v
2
∣∣

2
,

which is I -independent. An upper bound on |λ4| is therefore equivalent to an upper bound on
∆m2.
H has VEV v ≈ 174GeV and χ has no VEV. The VEV of V is

⟨0 |V | 0⟩ = −µ2
1v

2 +
λ1

2
v4.

The mass-squared of the Higgs particle is m2
H = 2λ1v

2. Since experimentally mH ≈ 125GeV,
one has λ1 ≈ 0.258.
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To compute UNI conditions,
we consider the scattering of
a pair of scalars of χ to
another pair of scalars, both
pairs having the same I and
Y .

UNI

|λ3|+
J + 1

2
|λ4| < 8π,

3 |λ1|+
√
9λ2

1 + 8 (2J + 1)λ2
3 < 16π,

|λ1|+
√
λ2
1 +

2

3
J (J + 1) (2J + 1)λ2

4 < 16π.

BFB

λ1 ≥ 0,

λ3 ≥ 0,

|λ4| ≤ 2λ3

J
.
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Full potential
The product χ⊗ χ of two identical multiplets of SU(2) only has a symmetric component—the
anti-symmetric component vanishes because the two multiplets are equal.

(χ⊗ χ)symmetric =


c2J
c2J−1

...
c−2J

⊕


d2J−2

d2J−3
...

d2−2J

⊕


e2J−4

e2J−5
...

e4−2J

⊕ · · ·

The two-field states in each multiplet in the right-hand side of equation above are evaluated by
using Clebsch–Gordan coefficients in the standard fashion. Then the invariants

F5 ≡
2J−2∑

I=2−2J

|dI |2 , F6 ≡
2J−4∑

I=4−2J

|eI |2 , · · · , Ft+3 ≡

{
|q1|2 + |q0|2 + |q−1|2 ⇐ J ∈ Q,

|q0|2 . ⇐ J ∈ Z.

The quartic part of the scalar potential thus is quartic χ terms in red

V4 =
λ1

2
F 2
1 +

λ2

2
F 2
2 + λ3F1F2 + λ4F4 +

t+3∑
i=5

λiFi , where t = ceil (n/2) .
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UNI

|λ1| < 8π,

|λ2| < 8π,

|λ2 + 2λi | < 8π (i = 5, . . . , t + 3).

|eignval(S)| < 8π, S =

 2λ1 λ1 Σ1

λ1 2λ1 Σ2

ΣT
1 ΣT

2 Λ

 ,

where the 1× n and n × n submatrices are given by

(Σ1)1k = λ3 +
λ4

2
(J + 1− k) ,

(Σ2)1k = λ3 −
λ4

2
(J + 1− k) ,

Λkl = λ2 (1 + δkl) + 4
t+3∑
i=5

λi

∑
m

CGi,J
k,l,m.

BFB

necessary BFB

λ1 ≥ 0, λ2 ≥ 0,

λ̂i ≥ 0, λ̂i ≡ λ2 + qi , qi ≡
2J2

κi
λi

λ3 ≥ −
√

λ1λ2, κi = (i − 4) (4J + 9− 2i) ,

|λ4| ≤ 2

J

(
λ3 +

√
λ1λ2

)
.

sufficient BFB

either λi > 0, or λiΛi < 0,

or

√
λ̂i

qi Λi
>

2

J |λ4|
, or λ3 ≥ −

√
λ̂i Λi

qi
,

respectively, where Λi ≡ J2

4 λ2
4 + qiλ1.
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Results

J 1/2 1 3/2 2 5/2 3 7/2
maximum |λ4| 26.46 17.49 11.96 8.10 5.97 4.65 3.76

maximum λ3 12.37 10.10 8.75 7.82 7.14 6.61 6.19

minimum λ3 −1.46 −1.26 −1.13 −1.03 −0.95 −0.89 −0.84

Table: The maximum allowed value of |λ4|, and the maximum and minimum allowed values of λ3, for
various values of J.

The maximum possible mass of a multiplet of
scalars as a function of its minimum mass m.

mmax =
√
m2 + Jv2 |λ4|maximal.

One sees that heavy scalar multiplets tend to be

almost degenerate; for m ≳ 2 TeV,

mmax −m ∼ 100 GeV.
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Numerical results
• If the new scalars are very heavy, and they cannot be produced at the LHC, then they will make

themselves felt only indirectly through their oblique corrections.

• We parameterize those corrections through six oblique parameters (OPs) S , T , U, V , W , and X .

An electroweak observable O obeys

ONP

OSM
= 1 + cOS S + cOT T + cOU U + cOV V + cOWW + cOX X
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Numerical results
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Figure: The upper bound on |λ4| versus the hypercharge Y , for various values of J, for m = 3 TeV, and
for fits with χ2 ≤ 30 (left panel) or χ2 ≤ 17 (right panel). The horizontal dashed lines indicate the upper
bounds from the UNI and BFB conditions, and the curved lines indicate the upper bounds from the OPs.
The gray bands indicate the J-dependent restrictions on Y derived in arXiv:2403.12914.
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RGEs
• In order to derive the one-loop RGEs we have used package SARAH.
• The dimensionless couplings that we take into account are g1, g2, g3, yt , and λi .
• The SARAH model files and output files, and the expressions of the RGEs are available at
https://github.com/jurciukonis/RGEs-for-multiplets.
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Figure: The maximum allowed values of |λ4| (left panel) and λ3 (right panel) versus J for different
cut-off scales µmax.



Model Results SM + quadruplet Conclusions

SM + quadruplet

We study the scalar potential of the extension of the SM through a scalar quadruplet with
hypercharge either Y = 1/2 or Y = 3/2 [arXiv:2406.01628].
In those cases there are extra couplings in the scalar potential. For instance, if Y = 1/2,

V4 =
λ1

2
F 2
1 +

λ2

2
F 2
2 + λ3F1F2 + λ4F4 + λ5F5 +

 8∑
p=6

λp

2
Fp +H.c.

.

The gauge-invariant quantities are generated by multiplying each triplet by the complex
conjugate of another triplet

F6 = (χ⊗ H)†3 (H ⊗ H)3 ,

F7 = (χ⊗ H)†3 (χ⊗ χ)3 ,

F8 = (H ⊗ H)†3 (χ⊗ χ)3 .
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UNI

There are only two scattering channels to be
considered:

• the channel of two-field states with I = Y = 1,

• the channel of two-field states with I = Y = 0.

All the other channels yield UNI conditions that just
reproduce some of those that we derive through
these two channels.
The moduli of the eigenvalues of the scattering
matrices must be smaller than M = 8π.

BFB

• We assume that the coefficients λ6–8 are real,

• we define three vectors v⃗1,2,3 in R6 expressed
by the scalar fields of the Higgs doublet and
quadruplet.

• then V4 = · · ·+λ6 v⃗1 · v⃗2+λ7 v⃗2 · v⃗3+λ8 v⃗1 · v⃗3.

Recipe for BFB

• We firstly minimize V4 relative to the angles
among the six-vectors v⃗1,2,3,

• we minimize V4 relative to F1,2,4,5 following
previous scheme and using conditions for
positivity of quartic polynomials,

• then we perform numerical scan over domain
of two parameters given by the straight line
y = 0 and by the parabola y = (9/5) x (1− x)
for x ∈ [0, 1].
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Results

The other authors use different definitions, for
instance

λ1 = 2λH , λ6 =
2√
3
λ̂Hϕ.

Motivation for further analysis

• Heavy particles can indirectly influence the
couplings of the Higgs boson, especially its
self-couplings.

• The UNI and BFB conditions can strongly
constrain the Higgs couplings
[arXiv:2311.17995].

• We are working on computing the Higgs cubic
and quartic couplings within the framework of
this model.

• Work in progress...
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Figure: Upper bounds on λ̂Hϕ as functions of λH .
The blue and red dots represent the upper bounds
given by other authors for the cases Y = 1/2 and
Y = 3/2, respectively. The lines depict the upper
bounds that we have computed from both our UNI
and BFB conditions.
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Conclusions

• We have found that, upper bound on ∆m2 depends crucially, not just on the UNI
conditions, but also on the BFB ones.

• We have been able to derive necessary and sufficient BFB conditions for this model,
allowing for the most general terms in the scalar potential.

• Our study can be understood as a step towards the understanding of more specific models
that will have specific values of J and Y .

• Analysis on SM + quadruplet for Y = 1/2 shows that inclusion of all terms in the scalar
potential leads to stronger restrictions on the model parameters.
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