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Dark Matter and WIMPs

• Many evidences of Dark Matter
• Galaxy rotational curve
• CMB
• Lensing effect

• Many candidates
• Neutrino
• Cold Dark Matter (CDM)
• Weakly Interacting Massive Particle (WIMP)
• Weak-type interaction

• no electric charge, no color
• Mass range in GeV-TeV range
• WIMP miracle

• correct relic abundance is obtained at WIMP < 𝜎𝑣 > = 𝑤𝑒𝑎𝑘 𝑠𝑐𝑎𝑙𝑒
• most extensions of SM are proposed independently at that scale. 2



Detection strategies

• Direct detection: DM interacts with SM particles (left to right)
• Indirect detection: DM annihilation (top to bottom)
• Accelerator: DM creation (bottom to top) 3



Direct Detection (DD)

• The signals are WIMP-nucleus recoil events

• Low probability requires high exposure
• Underground to avoid background

• Depend on features of targets and experimental set-ups
• Different nuclear targets and background subtraction:
• COSINE, ANAIS, DAMA, LZ, PandaX-4T, XENON-nT, PICO-60 and ect.
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Indirect Detection (NT)

• Capture rate in the celestial body

• WIMP scatters off nucleus at distance r inside celestial body
• same interaction probed by DD

• If its outgoing speed 𝑣-./ is below the escape velocity 𝑣012(𝑟), 
it gets locked into gravitationally bound orbit and keeps scattering 
again and again

• Capture process is favored for low (even vanishing) WIMP speeds
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Non-Relativistic Effective Theory (NREFT)

• WIMP is slow, so that the recoil events are non-relativistic
• NREFT provides a general and efficient way to characterize results
with mass of WIMP and coupling constants

• Hamiltonian: Σ3456 𝑐37𝒪37 + 𝑐3
8𝒪3
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• Non-relativistic process
• all operators must be invariant

by Galilean transformations
(𝑣 ~ 10!"𝑐 in galactic halo)

• Building operators using:
𝑖 9
:!

, �⃗�;, 𝑆< , 𝑆6
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Operators spin up to 1/2
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1

2𝑗! + 1
1

2𝑗" + 1
Σ#$%&# 𝑀 ' ≡ Σ(Σ)*+,-Σ)!*+,-𝑅())

! �⃗�./
',
�⃗�'

𝑚"
' , 𝑐%

), 𝑐0)
!

𝑊(
))! 𝑦

• Differential cross section : 12
13"

= -
-+#

'4$
56

7%

8%
-

'0&9-
-

'0$9-
Σ#$%& 𝑀 '

• Differential rate : 
1:
13"

= 𝑁. ∫8'()
8*+, ;&

4&
𝑣 12
13"

𝑓 𝑣 𝑑𝑣

• With 𝐸: =
<&$
% 8%

4$
,   𝑣4%& =

-
'4$3"

4$3"
<&$

+ 𝛿

Non-Relativistic Effective Theory (NREFT)

7



• Scattering amplitude:  
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• 𝑅())
!
: WIMP response function

• Velocity dependence: ℛ-..
!
= ℛ-,0..

!
+ℛ-,1..

!
𝑣2 − 𝑣3452

• 𝑊(
))!: nuclear response function

• 𝑦 = (𝑞𝑏/2)^2
• b: harmonic oscillator size parameter
• 𝑘 = 𝑀, Δ, Σ6, Σ66, 3Φ6 and Φ66

• allowed responses assuming nuclear ground state is a good approximation of P and T

Non-Relativistic Effective Theory (NREFT)
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• DD event rate
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• 𝑀𝜏789 : exposure

• 𝐸:,;< : experimental energy threshold

• 𝜁789 : experimental features such as quenching, resolution, efficiency, etc.
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DD event rate (elastic scattering)
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Capture rate (elastic scattering)
• Capture rate

𝐶⊙ = '!
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• 𝜌!: the number of density of target 

• r: distance from the center of the Sun for Standard Solar Model AGSS09ph

• 𝑢: DM velocity asymptotically far away from the Sun

• 𝑣"#$(𝑟): escape velocity at distance r

• 𝑤% 𝑟 = 𝑢% + 𝑣"#$% (𝑟)

• Neutrino Telescope (NT):
• the neutrino flux from the annihilation of WIMPs captured in the Sun

• DM annihilations into 𝑏D𝑏
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Capture rate (elastic scattering)

• with assumption of equilibrium between capture and annihilation:
Γ⊙ = 𝐶⊙/2

• 𝐶⊙ = ∫F
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Halo independent approach

• Scattering count rate:
𝑅 ∼ ∫𝑑𝑣 𝐻 𝑣 𝑓 𝑣

• Two parts of interaction and velocity distribution
• needs to avoid uncertainty
• interaction: include all possible interaction types
• velocity distribution: halo independent approaches

• Model independent method: the most general scenarios
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Halo independent approach

• Halo independent approach with arbitrary speed distribution, 𝑓 𝑢
• The only constraint: ∫.4F

.$%& 𝑓 𝑢 𝑑𝑢 = 1

• Direct detection experiments have a threshold 𝑢 > 𝑢/HII
• Due to the energy threshold of experimental detectors

• Capture in the Sun is favored for low WIMP speeds
• 𝑢 < 𝑢JGK:LM

• In order to cover full speed range: combine DD and capture
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Halo independent approach

• Considering one effective coupling (𝑐3) at a time:
• 𝑅0M8 𝑐3N = ∫ 𝑑𝑢 𝑓 𝑢 𝐻0M8 𝑐3N, 𝑢 ≤ 𝑅:LM
• 𝑅:LM : corresponding maximum experimental bound

• Using relation : 𝐻 𝑐3N, 𝑢 = 𝑐3N𝐻 𝑐3 = 1, 𝑢
• 𝐻 𝑐3,:LMN 𝑢 , 𝑢 = 𝑅:LM
• 𝑐3,:LMN 𝑢 = P$%&

Q 2'45,.
• 𝑐3,:LM 𝑢 : upper limit on 𝑐3 at single speed stream 𝑢
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Halo independent approach

• 𝑅0M8 𝑐3N = ∫ 𝑑𝑢 𝑓 𝑢 𝐻0M8 𝑐3N, 𝑢 ≤ 𝑅:LM

• upper limit on i-th coupling  𝑐3 : 

𝑐3N ≤ ∫F
.$%& 𝑑𝑢 R .

2',$%&
) .

K5
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Halo independent approach

• 𝑐∗ = 𝑐:LM6J =𝑢 = 𝑐:LMII =𝑢 : halo independent limit
• =𝑢 : intersection speed of NT and DD

• To	cover	whole	speed	range,
one	may	combine	DD	and	NT

• 𝑢JGK:LM = 𝑣012 𝑟
T:*:+

:*K:+
)

• 𝑢/HII
N = :+

NU*+
) 𝐸P,/H
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Halo independent approach

• Intersection:

𝑐6J :LM
N 𝑢 ≤ 𝑐∗N for 0 ≤ 𝑢 ≤ =𝑢

𝑐II :LM
N 𝑢 ≤ 𝑐∗N for =𝑢 ≤ 𝑢 ≤ 𝑢:LM

𝑐N ≤ 𝑐∗N ∫F
V. 𝑑𝑢 𝑓 𝑢

K5
= 2∗)

W

𝑐N ≤ 𝑐∗N ∫V.
.$%& 𝑑𝑢 𝑓 𝑢

K5
= 2∗)

5KW

𝛿 = ∫F
V. 𝑑𝑢 𝑓 𝑢

𝑐N ≤ 2𝑐∗N
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Halo independent approach

• If 𝑐II :LM
N 𝑢 > 𝑐∗N at 𝑢 = 𝑢:LM :
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• If 𝑢/HII > 𝑢:LM :

𝑐N ≤ 𝑐6J N 𝑢:LM

F. Ferrer, A. Ibarra, S. Wild A novel approach to derive halo-independent limits on dark matter properties, JCAP09(2015)052

• Halo independent limit may depend on 𝑢:LM



Halo independent approach
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• Effect of large 𝑢(7% is mild
• factor less than 2

S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from 
direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)



Halo independent approach
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• Relaxing factor
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S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from 
direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)



Halo independent approach
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• small or large mass range
• outside the bulk of Maxwellian
• smooth dependence on u

• intermediate range (10 ~ 200 GeV)
• inside the bulk of Maxwellian
• steep dependence on u

S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from 
direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)



Halo independent approach
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• small or large mass range
• outside the bulk of Maxwellian
• smooth dependence on u

• intermediate range (10 ~ 200 GeV)
• inside the bulk of Maxwellian
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Halo independent approach
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• small or large mass range
• outside the bulk of Maxwellian
• smooth dependence on u

• intermediate range (10 ~ 200 GeV)
• inside the bulk of Maxwellian
• steep dependence on u

S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from 
direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)



Halo independent approach
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• small relaxing factors
• 𝑂T,\ : SD with no 𝑞 suppression
• 𝑂],5F,5T : SD with 𝑞N suppression
• 𝑂^ : SD with 𝑞T suppression

S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from 
direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)



Halo independent approach
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• High relaxing factor: 
the halo-independent method can weaken the bound
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S. Kang, A. Kar, S. Scopel, Halo-independent bounds on the non-relativistic effective theory of WIMP-nucleon scattering from 
direct detection and neutrino observations, JCAP03(2023)011 (arXiv:2212.05774)



DD event rate (inelastic scattering)
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• DD event rate
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Capture rate (inelastic scattering)
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• Capture rate
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Kinematic conditions
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• 𝑢' + 𝑣?#7' 𝑟 = 0 > 𝑣.∗'
• for inelastic scattering process to be kinematically possible

• 𝑢 > 𝑢==A4%&
• for the recoil energy to be above the DD experimental threshold

• 𝑢 < 𝑢BA4CD
• for outgoing speed to be below the escape velocity in the Sun

• 𝑢==A4%& < 𝑢BA4CD
• for DD and capture intersect



Determining 𝛿!"#
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• Low 𝑚! region, capture can cover full 
speed range alone up to 𝛿4CD

• Capture alone can determine 𝛿4CD

• Above 𝛿4CD, no HI bounds

𝛿(/0 for HI

No HI bounds

S. Kang, A. Kar, S. Scopel, Halo-independent bounds on Inelastic Dark Matter, JCAP11(2023)077 (arXiv:2308.13203)



Determining 𝛿!"#
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• High 𝑚! region, DD and capture 
decide 𝛿4CD together

• 𝛿4CD is determined by a combination 
of DD and capture

• Above 𝛿4CD, no HI bounds

𝛿(/0 for HI

No HI bounds

S. Kang, A. Kar, S. Scopel, Halo-independent bounds on Inelastic Dark Matter, JCAP11(2023)077 (arXiv:2308.13203)



𝑚! − 𝛿 planes

31S. Kang, A. Kar, S. Scopel, Halo-independent bounds on Inelastic Dark Matter, JCAP11(2023)077 (arXiv:2308.13203)



Role of DD

• 𝑟 = 4$
4>

≥ 𝑟4%& ≃ 3.9
• below this value, only Capture determines 𝛿3?8

• SI (𝑇 = EF𝐹𝑒, N = 𝑋𝑒)
• r ≃	2.3

• SD (𝑇 = 'G𝐴𝑙, 𝑁 = 𝑋𝑒 (𝐼))
• r ≃	4.86 (4.7)

32S. Kang, A. Kar, S. Scopel, Halo-independent bounds on Inelastic Dark Matter, JCAP11(2023)077 (arXiv:2308.13203)



Halo-independent exclusion plots
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• HI exclusion plots of SI and SD couplings

• For increasing 𝛿 the constraints get weaker 
and WIMP mass range for HI bounds is shrinking

S. Kang, A. Kar, S. Scopel, Halo-independent bounds on Inelastic Dark Matter, JCAP11(2023)077 (arXiv:2308.13203)



Halo-independent exclusion plots
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No HI bounds

• low 𝑚@: capture is kinematically impossible

• high 𝑚@: DD and capture doesn’t intersect

S. Kang, A. Kar, S. Scopel, Halo-independent bounds on Inelastic Dark Matter, JCAP11(2023)077 (arXiv:2308.13203)



Dependence on 𝑢!"#
• HI might be sensitive to 𝑢4CD
• except point (3), 𝛿4CD does not change
even if we extend the value of 𝑢4CD
• Only happens is SI case and 𝛿4CD does
not decrease dramatically

36S. Kang, A. Kar, S. Scopel, Halo-independent bounds on Inelastic Dark Matter, JCAP11(2023)077 (arXiv:2308.13203)



WimPyDD

• User-friendly Python code

• Calculates expected rates in any scenarios: 
• arbitrary spins
• inelastic scattering
• generic WIMP velocity distribution

• Published and can be downloaded:
• https://wimpydd.hepforge.org/
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I. Jeong, S. Kang, S. Scopel, G. Tomar, WimPyDD: An object-oriented Python code for the calculation of WIMP direct 
detection signals, Computer Physics Communications, 2022.108342

https://wimpydd.hepforge.org/


Summary
• Halo independent method can be applied to any speed distribution
• Combining results of direct detection experiments and capture in the Sun 
may provide halo-independent bounds according to the value of 𝛿

• In elastic scattering,
• In most cases the relaxation of halo independent bounds is moderate

in low and high 𝑚@

• More moderate values of the relaxation is obtained with 𝑐AB
9

• High relaxing factor: halo independent method weaken the bounds
→ sensitive on speed distribution

• In inelastic scattering,
• There is a specific region in 𝑚@ − 𝛿 plane where Halo independent bounds is possible

• Unless 3"
3#

is larger than about 4, direct detection does not play any role
38


