CEvNS review and implications for Dark Matter searches

For a recent review see Europhysics Letters, Volume 143, Number 3, 2023 (EPL 143 34001), arXiv:2307.08842v2

Matteo Cadeddu matteo.cadeddu@ca.infn.it

Coherent elastic neutrino nucleus scattering (aka $CE\nu NS$)

+A pure weak neutral current process

$$\frac{d\sigma_{\nu_{\ell}-\mathcal{N}}}{dT_{\mathrm{nr}}}(E,T_{\mathrm{nr}}) = \frac{G_{\mathrm{F}}^2 M}{\pi} \left(1 - \frac{MT_{\mathrm{nr}}}{2E^2}\right) (Q_{\ell,\mathrm{SM}}^V)^2$$

+Weak charge of the nucleus $Q_{\ell,\text{SM}}^{V} = \begin{bmatrix} g_{V}^{p}(\nu_{\ell}) ZF_{Z}(|\vec{q}|^{2}) + g_{V}^{n}NF_{N}(|\vec{q}|^{2}) \end{bmatrix}$ protons neutrons

In general, in a weak neutral current process which involves nuclei, one deals with **nuclear form factors** that are different for protons and neutrons and cannot be disentangled from the neutrino-nucleon couplings!

J. Erler and S. Su. *Prog. Part. Nucl. Phys.* 71 (2013). arXiv:1303.5522 & PDG2023 and **M. Atzori Corona et al. arXiv:2402.16709**

+ Neutrino-nucleon tree-level couplings

$$g_V^p = \frac{1}{2} - 2 \sin^2(\vartheta_W) \cong 0.02274$$

 $g_V^n = -\frac{1}{2} = -0.5$

 + Radiative corrections are expressed in terms of WW, ZZ boxes and the <u>neutrino</u> <u>charge radius</u> diagram → <u>Flavour dependence</u>

$$g_V^p(\nu_e) \simeq 0.0381, \, g_V^p(\nu_\mu) \simeq 0.0299 \quad g_V^n \simeq -0.5117$$

Nuclear physics, but since $g_V^n \approx -0.51 \gg g_V^p(v_\ell) \approx 0.03$ neutrons contribute the most

$$\frac{d\sigma}{dE_r} \propto N^2$$

What we can learn from $CE\nu NS$

Standard Model physics

M. Atzori Corona et al. Refined determination of the weak mixing angle at low energy, <u>arXiv:2405.09416</u> (2024)

The CsI neutron skin fixing $\sin^2(\vartheta_W)$

If we fix the value of $\sin^2 \vartheta_W$ at the SM prediction (0.23863(5))then we obtain (1D fit):_

M. Atzori Corona et al., EPJC 83 (2023) 7, 683 arXiv:2303.09360

 R_n (CsI) = 5.47 ± 0.38 fm

~7% precision

Neutron skin: R_n (CsI)- R_p (CsI)

 $\Delta R_{np}(CsI) = 0.69 \pm 0.38 \, \text{fm}$

Theoretical values of the neutron skin of Cs and I obtained with nuclear mean field models. The value is compatible with all the models...

127 **T**

$0.12 < \Delta R_{np}^{con} < 0.24$ fr	0.12 <	ΔR_{np}^{CsI}	<	0.24 fm
--	--------	-----------------------	---	---------

133 Co

tron	Ski
e	Rein
	Rn

					1						US		
	Model	R_p^{point}	R_p	R_n^{point}	R_n	$\Delta R_{np}^{\mathrm{point}}$	ΔR_{np}	R_p^{point}	R_p	R_n^{point}	R_n	$\Delta R_{np}^{\text{point}}$	ΔR_{np}
	SHF SkI3 81	4.68	4.75	4.85	4.92	0.17	0.17	4.74	4.81	4.91	4.98	0.18	0.18
	SHF SkI4 81	4.67	4.74	4.81	4.88	0.14	0.14	4.73	4.80	4.88	4.95	0.15	0.14
	SHF Sly4 82	4.71	4.78	4.84	4.91	0.13	0.13	4.78	4.85	4.90	4.98	0.13	0.13
1	SHF Sly5 82	4.70	4.77	4.83	4.90	0.13	0.13	4.77	4.84	4.90	4.97	0.13	0.13
	SHF Sly6 82	4.70	4.77	4.83	4.90	0.13	0.13	4.77	4.84	4.89	4.97	0.13	0.13
Y	SHF Sly4d 83	4.71	4.79	4.84	4.91	0.13	0.12	4.78	4.85	4.90	4.97	0.12	0.12
/	SHF SV-bas 84	4.68	4.76	4.80	4.88	0.12	0.12	4.74	4.82	4.87	4.94	0.13	0.12
	SHF UNEDF0 85	4.69	4.76	4.83	4.91	0.14	0.14	4.76	4.83	4.92	4.99	0.16	0.15
	SHF UNEDF1 86	4.68	4.76	4.83	4.91	0.15	0.15	4.76	4.83	4.90	4.98	0.15	0.15
	SHF SkM* 87	4.71	4.78	4.84	4.91	0.13	0.13	4.76	4.84	4.90	4.97	0.13	0.13
	SHF SkP 88	4.72	4.80	4.84	4.91	0.12	0.12	4.79	4.86	4.91	4.98	0.12	0.12
	RMF DD-ME2 89	4.67	4.75	4.82	4.89	0.15	0.15	4.74	4.81	4.89	4.96	0.15	0.15
	RMF DD-PC1 90	4.68	4.75	4.83	4.90	0.15	0.15	4.74	4.82	4.90	4.97	0.16	0.15
	RMF NL1 91	4.70	4.78	4.94	5.01	0.23	0.23	4.76	4.84	5.01	5.08	0.25	0.24
	RMF NL3 92	4.69	4.77	4.89	4.96	0.20	0.19	4.75	4.82	4.95	5.03	0.21	0.20
	RMF NL-Z2 93	4.73	4.80	4.94	5.01	0.21	0.21	4.79	4.86	5.01	5.08	0.22	0.22
	RMF NL-SH 94	4.68	4.75	4.86	4.94	0.19	0.18	4.74	4.81	4.93	5.00	0.19	0.19
													-

Electroweak probes available

+ We can combine many electroweak processes to extract $R_n(Cs)$ and $\sin^2 \vartheta_W$.

Atomic Parity Violation (APV): atomic electrons interacting with nuclei-Cesium (Cs) and lead (Pb) available.

Mediated by the Z. Mostly Mediated by photons. sensitive to the weak Sensitive to the charge (proton) distribution (neutron) distribution.

+ We can combine APV(Cs) and COHERENT(Csl) to obtain a fully data driven measurement of the WMA in the low energy regime!

and thus on $R_n(Cs)$ and $\sin^2 \vartheta_W$

+ Atomic Parity Violation APV(Cs) and

CEvNS depends both on the weak charge

 $Q_W^{SM} \approx Z (1 - 4 \sin^2 \theta_W^{SM}) - N$

- Parity Violation Electron Scattering (PVES): polarized electron scattering on nuclei- **PREX(Pb)** & CREX(Ca)
- Coherent elastic neutrino-nucleus scattering (CEvNS)- Cesium-iodide (Csl), argon (Ar) and germanium (Ge) available.

Neutron M. Cadeddu and F. Dordei, PRD 99, 033010 (2019), arXiv:1808.10202 skin

Weak mixing angle

E158

10⁻² 10 FOUR-MOM

0.242

0.240

0.238

0.236

0.234

EFFECTIVE SIN² 94(Q)

PVES used for R_n

SFER Q (GeV)

9

CEvNS

ΑΡ\/

used for $\sin^2(\vartheta_W)$

ElectroWeak only fit

- + We perform a fit using Electroweak (EW) only information removing the R_n(Cs) input from CSRe
- + APV(Cs) 21
- + COHERENT CsI

+ APV(Pb)+PREX-II

- M. Atzori Corona et al. PRC 105, 055503 (2022),
 Arxiv: 2112.09717,
- APV has been measured also using lead.
- Moreover PREX-II has measured the Pb neutron skin with Parity Violation Electron Scattering (PVES).

0.30

We can profit from a 0.25 [پ very nice correlation (¹³³Cs) between $R_{n}(Cs)$ and 0.20 R_n(Pb) within many ∆Rpoint ARpoint 0.15 theoretical nuclear models to translate $R_n(Pb)$ to $R_n(Cs)$ non-EW on Pb 0.10 0.15 0.20 0.25 0.30 0.10 - M. Cadeddu et al. ΔR_{np}^{point} (²⁰⁸Pb) [fm]

^{_]} PRD **104**, 011701 (2021), arXiv:2104.03280

Conclusions for $\sin^2 \vartheta_W$

A very nice agreement between the EW fit and that R_n(Cs) from proton scattering is achieved!

Bevondthe Standard Mode

Light mediators from SM U(1)' extensions: vector-boson case

- Search for anomaly free extensions of the SM (connection with Dark Sectors, Hidden Sectors..)
- Light mediators ~ MeV few GeVs

Rev.Mod.Phys. 81 (2009) 1199-1228

 $SU(2)_{\rm L} \otimes U(1)_{\rm Y} \otimes SU(3)_{\rm c} \rightarrow SU(2)_{\rm L} \otimes U(1)_{\rm Y} \otimes SU(3)_{\rm c} \otimes U(1)'$

• The effect of the new mediator is quantified by additional terms in the weak charge of the nucleus

$$Q_{\ell,\text{SM+V}}^{V} = Q_{\ell,\text{SM}}^{V} + \frac{g_{Z'}^{2}Q_{\ell}'}{\sqrt{2}G_{F}\left(|\vec{q}|^{2} + \underline{M_{Z}^{2}}\right)} \left[(2Q_{u}' + Q_{d}') ZF_{Z}(|\vec{q}|^{2}) + (Q_{u}' + 2Q_{d}') NF_{N}(|\vec{q}|^{2}) \right]$$

See also: Miranda et al. Phys. Rev. D 101, 073005 (2020) Coloma et al. JHEP 01 (2021) 114

The coupling of the new vector bo the quarks is generated by kinetic r with the photon at the one-loop level

 $u_{\alpha L}$

 $q^2 - m_{Z'}^2$

is

14

Constraints on light mediators from COHERENT data

For more constraints: M. Atzori Corona et al. JHEP 05 (2022)109, <u>arXiv:2202.11002</u>

 $2\sigma(g-2)_{\mu}$

allowed region

2σ

---- Csl

---- Ar

 10^{1}

CsI+Ar

 $M_{Z'}$ [GeV]

Universal model

- Same coupling to all SM fermions
- Improved constraints for $20 < M_{z'} < 200$ MeV and $2 \times 10^{-5} < g_{z'} < 10^{-4}$
- $(g-2)_{\mu}$ excluded

B-L

• Quark charge $Q_q = 1/3$; Lepton charge $Q_\ell = -1$

 10^{0}

CsI+Ar

limit

 10^{-1}

B-L vector boson

HPS

 $(g-2)_{\mu}$

E141

-CAL I

E137

 10^{-2}

 $(g-2)_e$

Orsa

- Improved constraints for $10 < M_z$, <200 MeV and $5 \times 10^{-5} < g_z$, < 3×10^{-4}
- $(g-2)_{\mu}$ excluded

 ${}^{2}a^{10}$

 10^{-}

 10^{-4}

 10^{-5}

Limits on v magnetic moment and millicharge

In the SM the channel due to neutrino-electron scattering is negligible with respect to that of CEvNS, however the contribution due to the magnetic moment and the millicharge grows as 1/T. Dark matter-searching experiments such as LZ, XENONnT that observe solar neutrinos are sensitive to these quantities

M. Atzori Corona et al. PRD **107**, 053001 (2023), arXiv:2207.05036

WIMPS: the future and the CEvNS background

Conclusions

- + CE ν NS is a powerful tool for measuring both SM and BSM physics.
- + Combination with other electroweak probes is fundamental in order to break some degeneracies!
- + Many CEvNS experiments are expected to produce results soon!

