

VBF and VBS Measurements in ATLAS Zhen Wang Tsung-Dao Lee Institute On behalf of the ATLAS Collaboration

PASCOS 2024

2024/July/10

Motivation

- Direct probes of boson interactions, both in standard model and beyond
- Allows to test SM predictions to triple and quartic gauge couplings

• Looking at the smallest EW crosssections

EW measures both VBS and non-VBS process, inclusive measurements include EW + QCD + interference < 3 >

Motivation:

- Probes mechanism of electroweak symmetry breaking (EWSB) in the Standard Model (SM)
- Unique sensitivity for new physics phenomena •
- Strong VVjj, $O(\alpha^4 \alpha_s^2)$ Electroweak VBS VVjj, $O(\alpha^6)$ 0000000 Electroweak non-VBS VVjj, $O(\alpha^6)$ + Not in W[±]W[±] SM Approval
- $W^{\pm}W^{\pm}jj$ final states has largest EW to QCD xsection ratio because of the suppression of QCD-induced background

Same-sign W[±]W[±]ii

Same-sign W[±]W[±]jj Strategy

- SR selections:
 - Two isolated same-sign leptons with transverse momentum $p_T > 27 \ GeV$
 - Large missing energy due to presence of neutrinos $E_T^{miss} > 30 \text{ GeV}$
 - Jet transverse momentum $p_T^{leading} > 65 \text{ GeV } p_T^{sub-leading} > 30 \text{ GeV}$ and b-veto
 - VBS signature: $m_{jj} > 500 \text{ GeV } \& |\Delta y_{jj}| > 2$
- WZ CR (improve modelling from QCD-induced $W^{\pm}Zjj$ events):
 - One more lepton with $p_T > 15 \ GeV$
 - $m_{jj} > 200 \text{ GeV} \& m_{lll} > 106 \text{ GeV} (suppress radiative Z decay)$
- Low- m_{jj} CR (control uncertainties of major background in signal extraction fit):
 - $200 \ GeV < m_{jj} < 500 \ GeV$

- Backgrounds modelled with MC and data-driven method:
 - $WZ/\gamma^* jj$
 - Non-prompt lepton & lepton charge mis-identification
 - Remaining background...

• Same-sign $W^{\pm}W^{\pm}jj$ Fiducial Cross Section

- Fiducial region defined as closely as possible to the analysis selections
- Separate maximum likelihood fits with free parameter μ_{sig}^{EW} ($\mu_{sig}^{EW+Int+QCD}$) performed to measure the EW and inclusive cross sections. $\mu^{QCD WZ}$ used as normalization coefficient for QCD $W^{\pm}Zjj$
- SR and CRs are split into four regions depending on lepton flavors : ee, $e\mu$, μe , $\mu\mu$

Description	$\sigma_{ m fid}^{ m EW}$ [fb]	$\sigma_{\rm fid}^{\rm EW+Int+QCD}$ [fb]
Measured cross section	2.92 ± 0.22 (stat.) ± 0.19 (syst.)	3.38 ± 0.22 (stat.) ± 0.19 (syst.)
MG5_AMC+Herwig7	$2.53 \pm 0.04 (PDF) ^{+0.22}_{-0.19} (scale)$	2.92 ± 0.05 (PDF) $^{+0.34}_{-0.27}$ (scale)
MG5_AMC+Pythia8	$2.53 \pm 0.04 (PDF) + 0.22 \\ - 0.19 (scale)$	$2.90 \pm 0.05 (PDF) + 0.33 \\ - 0.26 (scale)$
Sherpa	$2.48 \pm 0.04 (PDF) ^{+0.40}_{-0.27} (scale)$	$2.92 \pm 0.03 (PDF) ^{+0.60}_{-0.40} (scale)$
Sherpa \otimes NLO EW	$2.10 \pm 0.03 (PDF) + 0.34 - 0.23 (scale)$	2.54 ± 0.03 (PDF) $^{+0.50}_{-0.33}$ (scale)
Powheg Box+Pythia	2.64	_

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-32/

- Predictions agree with the observed data within uncertainties generally
- Observed cross section is slightly higher than predicted cross section

• Same-sign $W^{\pm}W^{\pm}jj$ Differential Cross Section

- Same fiducial space is used for extraction of differential cross section
- A maximum-likelihood fit is performed to do the cross section unfolding
- Five observables $m_{ll}, m_T, m_{jj}, N_{gapjets}$ and ξ_{j3} are studied

- Prediction underestimates data but is in good agreements within uncertainties
- Have observed overprediction and underprediction in distribution of m_T

• Same-sign $W^{\pm}W^{\pm}jj$ EFT Interpretation

- Measurement could be used to search for new physics affect WWWW coupling
- Sensitivity is quantified by setting limits on D-8 EFT operators

Coefficient	Туре	No unitarisation cut-off [TeV ⁻⁴]	Lower, upper limit at the respective unitarity bound $[\text{TeV}^{-4}]$
$f_{ m M0}/\Lambda^4$	Exp.	[-3.9, 3.8]	-64 at 0.9 TeV, 40 at 1.0 TeV
	Obs.	[-4.1, 4.1]	-140 at 0.7 TeV, 117 at 0.8 TeV
$f_{ m M1}/\Lambda^4$	Exp.	[-6.3, 6.6]	-25.5 at 1.6 TeV, 31 at 1.5 TeV
	Obs.	[-6.8, 7.0]	-45 at 1.4 TeV, 54 at 1.3 TeV
$f_{ m M7}/\Lambda^4$	Exp.	[-9.3, 8.8]	-33 at 1.8 TeV, 29.1 at 1.8 TeV
	Obs.	[-9.8, 9.5]	-39 at 1.7 TeV, 42 at 1.7 TeV
$f_{\rm S02}/\Lambda^4$	Exp.	[-5.5, 5.7]	-94 at 0.8 TeV, 122 at 0.7 TeV
	Obs.	[-5.9, 5.9]	_
$f_{\rm S1}/\Lambda^4$	Exp.	[-22.0, 22.5]	_
	Obs.	[-23.5, 23.6]	_
$f_{ m T0}/\Lambda^4$	Exp.	[-0.34, 0.34]	-3.2 at 1.2 TeV, 4.9 at 1.1 TeV
	Obs.	[-0.36, 0.36]	-7.4 at 1.0 TeV, 12.4 at 0.9 TeV
$f_{\mathrm{T1}}/\Lambda^4$	Exp.	[-0.158, 0.174]	-0.32 at 2.6 TeV, 0.44 at 2.4 TeV
	Obs.	[-0.174, 0.186]	-0.38 at 2.5 TeV, 0.49 at 2.4 TeV
$f_{\rm T2}/\Lambda^4$	Exp.	[-0.56, 0.70]	-2.60 at 1.7 TeV, 10.3 at 1.2 TeV
	Obs.	[-0.63, 0.74]	_

EFT limits with and without unitarisation cut-off

Prefit distribution

Postfit distribution

https://arxiv.org/abs/2403.04869

Opposite-sign W⁺W⁻jj

- First observation of EW W^+W^-jj in ATLAS
- Opposite-sign W^+W^-jj has small cross sections and large background contributions
- Two neural networks trained to separate signal from $t\bar{t}$ and Strong W^+W^-jj backgrounds
- Interesting events should contain two leptons, two or three jets and missing transverse energy

- One signal region, one control region to constrain top backgrounds
- Apply cuts before the neural network training
- Two NNs for two-jet and three-jet cases in SR, validation checks performed in low NN-score region (<0.6) on:
 - DATA/MC agreement and correlations between variables
- Uncertainty estimations:
 - Experimental uncertainties: jet energy scale, b-tagging efficiency, jet flavor composition and jet energy scale dependence on pile-up
 - Theoretical uncertainties on signal, top and QCD
 - Statistical uncertainties

Opposite-sign W⁺W⁻jj Fiducial Cross Section

- A profile likelihood fit is performed on the NN output simultaneously in the SR and CR
- The fiducial region is defined with selections similar to reconstructed signal region with extra cut on $m_{ii} > 500 \text{ GeV}$

- The NN modelling is in good agreement with data
- The observed (expected) significance is 7.1σ (6.2 σ), for both 2 and 3 jets combined.

https://link.springer.com/article/10.1007/JHEP01(2024)004

Differential ZZjj

- EW ZZjj sensitive to WWZ and WWZZ weak-boson self-interactions
- Theoretical prediction of QCD ZZjj sensitive to the accuracy of perturbative QCD calculation (overall production rate and kinematic properties of the final states)

- Goals:
 - Unfolded differential cross section measurement of interesting kinematic observables
 - Limits on triple and quartic gauge couplings

Differential ZZjj Strategy

- Selections:
 - Same-flavor opposite-charge (SFOC) lepton pairs ordered by $|m_{ll} m_Z|$
 - Four lepton system invariant mass $m_{4l} > 130 \ GeV$
 - Leading (sub-leading) jets with transverse momentum > 40 (30) *GeV*, dijet invariant mass and separation angle m_{jj} > 300 *GeV* & $|\Delta y_{jj}|$ > 2.0

$$\zeta = \frac{(y_{4l} - 0.5(y_{j_1} + y_{j_2}))}{\Delta y_{jj}}$$

- Events further categorized into VBS-enhanced ($\zeta < 0.4$) and VBS-suppressed ($\zeta > 0.4$) regions
- Inclusive measurements on both EW and strong *ZZjj* production
- Samples:
 - Nominal strong *ZZjj* : SHERPA
 - Alternative strong *ZZjj* : MG5_NLO+PY8
 - Nominal EW *ZZjj* : MG5+PY8
 - Alternative EW *ZZjj* : POWHEG+PY8

Differential ZZjj Differential Cross Section

- Particle-level measurements in both VBS-enhanced and VBS-suppressed fiducial regions
- Unfolding done with iterative Bayesian method to correct the detector effect

- Generally good agreement between Data and MC prediction
- MG5_NLO+PY8 underestimates the observed data especially in low m_{4l} and m_{jj}

Differential ZZjj EFT Interpretation

- Unfolded distribution for the search of physics beyond the SM
- m_{4l} and m_{jj} are used to set limits on dim-8 and dim-6 EFT operators

Wilson	$ \mathcal{M}_{\mathrm{d8}} ^2$	95% confidence interval [TeV ⁻⁴]	
coefficient	Included	Expected	Observed
$f_{\mathrm{T},0}/\Lambda^4$	yes	[-0.98, 0.93]	[-1.00, 0.97]
	no	[-23, 17]	[-19, 19]
$f_{\mathrm{T},1}/\Lambda^4$	yes	[-1.2, 1.2]	[-1.3, 1.3]
	no	[-160, 120]	[-140, 140]
$f_{\mathrm{T},2}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]
	no	[-74, 56]	[-63, 62]
$f_{\mathrm{T},5}/\Lambda^4$	yes	[-2.5, 2.4]	[-2.6, 2.5]
	no	[-79, 60]	[-68, 67]
$f_{\mathrm{T,6}}/\Lambda^4$	yes	[-3.9, 3.9]	[-4.1, 4.1]
	no	[-64, 48]	[-55, 54]
$f_{\mathrm{T},7}/\Lambda^4$	yes	[-8.5, 8.1]	[-8.8, 8.4]
	no	[-260, 200]	[-220, 220]
$f_{\mathrm{T,8}}/\Lambda^4$	yes	[-2.1, 2.1]	[-2.2, 2.2]
	no	[-4.6, 3.1]×10 ⁴	[-3.9, 3.8]×10 ⁴
$f_{\mathrm{T},9}/\Lambda^4$	yes	[-4.5, 4.5]	[-4.7, 4.7]
	no	$[-7.5, 5.5] \times 10^4$	[-6.4, 6.3]×10 ⁴

• Generally Wilson coefficients are consistent with zero when pure D8 contribution is included

• Wilson coefficients associated with T,0 and T,1 operators are most tightly constrained

• VBS Wγ jj

- Analysis targets:
 - Observation of EWK Wy+jj production
 - Differential cross-section measurements of EWK Wy+jj production
 - Unfold $m_{jj}, p_T^{jj}, \Delta \phi_{jj}, p_T^{lep}, \Delta \phi_{l\gamma}, m_{l\gamma}$
 - EFT Interpretation targeting dimension-8 operators

Signal:

W

Typical diagrams

Measurements performed in VBS-enhanced phase-space

No hadronic activity in central region between two jets, γ and W boson produced in central regions. Apply high-dijet mass, large forward jet rapidity gap...

• VBS Wγ jj Strategy

- Selections:
 - Single lepton and missing momentum with $p_T^l > 30 \text{ GeV} \& E_T^{miss} > 30 \text{ GeV}$
 - One photon with $p_T^{\gamma} > 22 \text{ GeV}$ and two jets with $p_T^j > 50 \text{ GeV}$
 - VBS signature with large $m_{jj} > 500 \text{ GeV}$ and $|\Delta y_{jj}| > 2$
- Data-driven background estimations:
 - Jet faking photons with template fit method
 - Jet faking electron/muons with fake factor method
 - Electron faking photons with tag and probe method
- Observation:
 - NN trained using events after $m_{jj} > 500 \text{ GeV } \& N_{gapjets} = 0$
 - Profile likelihood fit to the NN score
- Differential measurement:
 - Extract signal + constrain QCD simultaneously
 - Use bootstrapping to evaluate statistical significance of systematic uncertainties
- EFT interpretation:
 - Iterative Bayesian unfolding to correct detector effects
 - Unfolded distribution for setting limits on dim-8 operators

• VBS Wγ jj Measurements

- Fiducial measurements:
 - The observed significance is well above 6 standard deviation compared to the expected significance of 6.3σ
 - MadGraph5+PYthia8 is in good agreements with data while Sherpa underestimates data within 2 standard deviations
- Differential measurements:
 - Cross sections as a function of m_{jj} , p_T^{jj} , $\Delta \phi_{jj}$, p_T^{lep} , $\Delta \phi_{l\gamma}$, $m_{l\gamma}$ are studied
 - Both Sherpa and Madgraph are in good agreement with data within uncertainties
 - MG overshoot at high $m_{jj} \& p_T^{jj}$
 - Sherpa underestimates all six observables
- Analysis is sensitive to 16 dim-8 EFT operators. Aim to set limits on couplings in Warsaw basis.
- Using EFT samples with full detector simulation

https://arxiv.org/abs/2403.15296 ● VBS WZ jj

- First <u>observation</u> using 2015-2016 data
- EWK *WZjj* production: •
 - Better precision on fiducial cross section measurement
 - Perform the first EW WZjj differential cross section measurement
 - Simultaneously measure $\sigma_{WZjj-EW}$ and $\sigma_{WZjj-strong}$ in the SR •
- Inclusive *WZjj* production: •
 - Better precision on differential cross section measurements
 - Unfold BDT score distribution
- Interpretation of results on EFT frame: •
 - Detector level limits using 2D template of $M_T^{WZ} BDT$ score

• VBS WZ jj Strategy

- WZjj EW and WZjj Strong integrated measurements:
 - Separate the signal region into two categories of different N_{jets}
 - Maximum likelihood fit performed on BDT score distribution

- *WZjj EW* and *WZjj Strong* differential measurements:
 - SR separated into bins of N_{jets} and m_{jj}
 - Simultaneous fit to the data of the BDT score distribution of events in each bin is performed

- Differential *WZjj* measurements:
 - Iterative Bayesian method with 3 iterations used to correct detector effects
 - MC scaled to data to better model the data and minimize unfolding uncertainty
 - Variables: M_T^{WZ} , $\Delta \phi(W, Z)$, N_{jets} , m_{jj} , Δy_{jj} , $\Delta \phi_{jj}$, $N_{jets(gap)}$, Z_{j3} , BDT score

• VBS WZ jj Results

• *WZjj – EW* and *WZjj – Strong* integrated measurements:

$\sigma_{WZjj-EW}$	=	$0.368 \pm 0.037 \text{ (stat.)} \pm 0.059 \text{ (syst.)} \pm 0.003 \text{ (lumi.)} \text{ fb}$
	=	0.37 ± 0.07 fb,
$\sigma_{WZjj-\text{strong}}$	=	$1.093 \pm 0.066 \text{ (stat.)} \pm 0.131 \text{ (syst.)} \pm 0.009 \text{ (lumi.)} \text{ fb}$
	=	1.09 ± 0.14 fb,

- Good agreement found between MC predictions of different generators and the measured cross sections
- Differential *WZjj* measurements:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2018-35/

• VBS WZ jj Results EFT

- No deviation with respect to the SM predictions is observed
- Two dimensional distribution $M_T^{WZ} BDT$ used for extraction of limits

Binning optimization: BDT: [-1.0, -0.25, 0.17, 0.72, 1.0] M_T^{WZ} : [0, 400, 750, 1050, 1350, ∞]

	Expected	Observed
	$[\text{TeV}^{-4}]$	$[{\rm TeV}^{-4}]$
$f_{ m T0}/\Lambda^4$	[-0.80, 0.80]	[-0.57, 0.56]
$f_{\mathrm{T1}}/\Lambda^4$	[-0.52, 0.49]	[-0.39,0.35]
$f_{\mathrm{T2}}/\Lambda^4$	[-1.6, 1.4]	[-1.2, 1.0]
$f_{ m M0}/\Lambda^4$	[-8.3, 8.3]	[-5.8, 5.6]
$f_{ m M1}/\Lambda^4$	[-12.3, 12.2]	[-8.6, 8.5]
$f_{ m M7}/\Lambda^4$	[-16.2, 16.2]	[-11.3, 11.3]
$f_{ m S02}/\Lambda^4$	[-14.2, 14.2]	[-10.4, 10.4]
$f_{ m S1}/\Lambda^4$	[-42, 41]	[-30, 30]

Expected and observed lower and upper 95% CL limits on the Wilson coefficients

Coefficients associated to T0 and T1 are the most tightly constraint

- Several measurements are reported about EW or inclusive production of different final states
- Generally the observed data has good agreements with predictions
- Limits on EFT operators are set in most cases
- Results are bringing challenge to electroweak cross section calculations and kinematic modellings

谢谢!

