

Introduction to SM measurements

Fabrice Balli, CEA Saclay

PASCOS 2024 Quy Nhon, Vietnam, 7-13 July, 2024

DE LA RECHERCHE À L'INDUSTRIE

Outline

- The Standard Model of Particle Physics
- The global electroweak fit : where do we stand ?
 - m_W , $sin^2 \theta_W$, m_{top}
- $\alpha_{\rm S}$
- Going beyond the SM with EFT

The Standard Model (SM)

$$\begin{split} \mathcal{L} &= -\frac{1}{4} W_{\mu\nu} \cdot W^{\mu\nu} - \frac{1}{4} B_{\mu\nu} \cdot B^{\mu\nu} \\ &+ \overline{L} \gamma^{\mu} \left(i \partial_{\mu} - g \frac{1}{2} \tau \cdot W_{\mu} - g' \frac{Y}{2} B_{\mu} \right) L \\ &+ \overline{R} \gamma^{\mu} \left(i \partial_{\mu} - g' \frac{Y}{2} B_{\mu} \right) R \\ &+ \left| \left(i \partial_{\mu} - g \frac{1}{2} \tau \cdot W_{\mu} - g' \frac{Y}{2} B_{\mu} \right) \phi \right|^{2} \\ &- V(\phi) - (G_{1} \overline{L} \phi R + G_{2} \overline{L} \phi_{c} R + h. c.) \\ &- g(\overline{q} \gamma^{\mu} T_{a} q) G_{\mu}^{a} - \frac{1}{4} G_{\mu\nu}^{a} G_{a}^{\mu\nu} \end{split}$$

- electromagnetic force photon γ
- weak interaction Z, W+, W-
- strong interaction 8 gluons
- Higgs boson confers mass to the other particles
 ; discovered in 2012 by ATLAS and CMS
- —> See Anne-Catherine's talk and Higgs session
- Gravitational interaction not described by the SM

The Standard Model (SM)

 electromagnet force photon y

song interaction — 8 gluons

- Higgs boson confers mass to the other particles
 - ; discovered in 2012 by ATLAS and CMS
- —> See Anne-Catherine's talk and Higgs session
- Gravitational interaction not described by the SM

Looking for deviations to the SM via the Global electroweak fits

- Electroweak theory (true at all orders, need to remove ('tree')) (1)
- Also, one has (2)
- After solving the 2nd order equation in m_W² one gets (3)
- Where radiative corrections to the W boson propagator (dominated by top and Higgs contributions) can be expressed as :

$$\Delta r = \Delta \alpha - \frac{\cos^2 \theta_W}{\sin^2 \theta_W} \Delta \rho + \Delta r_{res},$$

 Top quark mass dependence dominated by :

$$\Delta \rho^{top} \approx \frac{3\sqrt{2}G_{\mu}m_{\rm top}^2}{16\pi^2}$$

Higgs boson mass dependence dominated by :

$$\Delta r_{res}^{Higgs} \approx \frac{\sqrt{2}G_{\mu}m_W^2}{16\pi^2} [\frac{11}{3}(\ln\frac{m_h^2}{m_W^2} - 5/6)].$$

 $m_{W}^{2} = \frac{\pi \alpha_{tree}}{\sqrt{2}G_{\mu}\sin^{2}\theta_{W,tree}} \quad (1)$ $m_{W}^{2} = \frac{g_{W}^{2}v^{2}}{4}, \ m_{Z}^{2} = \frac{g_{W}^{2}v^{2}}{4\rho_{0}\cos^{2}\theta_{W}} = \frac{m_{W}^{2}}{\rho_{0}\cos^{2}\theta_{W}} (2)$

G. Burgers and F. Jegerlehner 10.5170/CERN-1989-008-V-1.55

> Relationship between W mass, top mass and Higgs mass (and EW parameters) !

The global EW fit

- Idea of electroweak fits
 - Measure many different observables in experiments
 - Calculate the relations between all observables in the Standard Model
 - Probe the consistency of the SM by predicting observables
- Input for the gobal electroweak fit mostly from
 - LEP: Z boson observables (e.g. $sin^2\theta_W$)
 - Tevatron: W boson, top quark mass
 - LHC: Higgs boson, W boson, top quark mass
- When not including the latest CDFII mW measurement, overall good consistency between indirect determination (i.e. physics parameter left free) and the direct measurements
 - p-value : 0.34

<u>arXiv:2211.07665</u>

The global EW fit

- Test the consistency of the Standard Model
 - e.g. predict m_W, provided all other input measurements
- needs 6 MeV precision on m_W to compete with indirect determination from theory fit (10⁻⁴ relative uncertainty!)
- Electroweak precision measurements also sensitive to several new physics scenarios
- —>mw measurement needs very accurate prediction for W production and kinematics of decay products :
 - W p_T and rapidity spectrum
 - polarisation (spin correlations)
 - high order EW (NLO)
- Proton PDFs are an essential ingredient for this
- It also needs detector calibration at the same level of precision!
- More on this measurement in Eram's talk !

arXiv:2211.07665

[S. Heinemeyer, W. Hollik, G. Weiglein, L. Zeune '18]

The weak mixing angle, $sin^2\theta_W$

 A_{μ}

 \mathcal{V}_{f}

 \mathcal{A}_{\cdot}

sin

- Weak mixing angle is an SM parameter of paramount importance
 - The main parameter of electroweak unification
 - At leading order, defines the ratio of the W and Z masses
 - and the parity-violating vector coupling of the Z to the fermions
 - Radiative corrections in the SM
- Best (preliminary) result of WMA in a hadron collider released by CMS last Winter
 - Measure $\sin^2\theta_{\ell, eff}$ through forwardbackward asymmetry (A_{FB}) of leptons in Z events, in mass and rapidity bins
- See also Qiang's talk

$$= \begin{pmatrix} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{pmatrix} \begin{pmatrix} B_\mu \\ W_\mu^3 \end{pmatrix} \overset{\text{eff}}{\leftarrow} I = T_3^f - 2Q_f (1 + \Delta \kappa) \sin^2 \theta_W \\ = T_3^f \\ \Delta^2 \theta_{eff}^\ell = (1 - m_W^2 / m_Z^2) \kappa^\ell \end{pmatrix} \overset{\text{eff}}{\leftarrow} I = (1 - m_W^2 / m_Z^2) \kappa^\ell$$

13 TeV)

60

sin²0_W : low/high energy perspective

- New particles or interactions influence $\sin^2\theta_W$ and its energy dependence
- New generation of experiments will allow to probe these with better precision!

0.03

0.02

0.01

0.00

-0.01

-0.02

Quartic Higgs coupling λ

arXiV:1707.08124

Meta-stability

178

The top quark mass

- Important role in the SM electroweak fit
- Also key parameter for vacuum stability
- $V(\Phi) = -m_h^2(\mu)|\Phi|^2 + \lambda(\mu)|\Phi|^4$ • Higgs potential shape:
- Potential stability depends on the sign of $\lambda(\mu)$, quartic coupling
- Picture could change radically when top quark mass (and α_s) are measured in future colliders at the ttbar production threshold! (e.g. FCC-ee, muon colliders)

The top quark mass

- Legacy Run1 measurements
 - Latest combination reaches exquisite precision!
 - 172.52+-0.33 GeV!
 - Dominated by b-jet uncertainties
- More progress being made in the topic
 - Indirect measurements (from crosssection) : avoid ambiguity on 'MC mass vs pole mass'
 - Improvements on modeling with *e.g.* 'bb4I' generator:
 - correct treatment of t⁻t/tW interference at NLO
 - off-shell effects accurate at NLO
 - top decay description at NLO
 - exact spin correlations at NLO
- See also Harish' talk

ATLAS+CMS Preliminary LHCtopWG	m _{top} summar	y, √s = 1.96-13 TeV Ap	ril 2024
LHC comb. (Feb 2024), 7+8 TeV LHCtopy	vg [1]		
statistical uncertainty		total stat	
total uncertainty		m + total (stat + syst + recoil) [0]	
LHC comb. (Feb 2024), 7+8 TeV		$172.52 \pm 0.33 (0.14 \pm 0.30)$	<20 fb ⁻¹ [1]
World comb. (Mar 2014), 1.9+7 TeV	H	$173.34 \pm 0.76 (0.36 \pm 0.67)$	<8.7 fb ⁻¹ [2]
ATLAS I+iets 7 TeV		$172.33 \pm 1.27 (0.75 \pm 1.02)$	4.6 fb ⁻¹ . [3]
ATLAS, dilepton, 7 TeV		173.79 ± 1.42 (0.54 ± 1.31)	4.6 fb ⁻¹ [3]
ATLAS, all jets, 7 TeV		175.1±1.8 (1.4±1.2)	4.6 fb ⁻¹ , [4]
ATLAS, dilepton, 8 TeV	4	172.99 ± 0.84 (0.41± 0.74)	20.3 fb ⁻¹ , [5]
ATLAS, all jets, 8 TeV	•	173.72 ± 1.15 (0.55 ± 1.02)	20.3 fb ⁻¹ , [6]
ATLAS, I+jets, 8 TeV		172.08 ± 0.91 (0.39 ± 0.82)	20.2 fb ⁻¹ , [7]
ATLAS comb. (Feb 2024) 7+8 TeV		172.71 \pm 0.48 (0.25 \pm 0.41)	≤ 20.3 fb ⁻¹ [1]
ATLAS, leptonic inv. mass, 13 TeV		$174.41 \pm 0.81 \ (0.39 \pm 0.66 \pm 0.25)$	5) 36.1 fb ⁻¹ , [8]
ATLAS, dilepton (*), 13 TeV		$172.21 \pm 0.80 \ (0.20 \pm 0.67 \pm 0.39)$	•) 139 fb ⁻¹ [9]
CMS, I+jets, 7 TeV	+1	173.49 ± 1.07 (0.43 ± 0.98)	4.9 fb ⁻¹ , [10]
CMS, dilepton, 7 TeV		172.5 ± 1.6 (0.4 ± 1.5)	4.9 fb ⁻¹ , [11]
CMS, all jets, 7 TeV		173.49 ± 1.39 (0.69 ± 1.21)	3.5 fb ⁻¹ , [12]
CMS, I+jets, 8 TeV		172.35 ± 0.51 (0.16 ± 0.48)	19.7 fb ⁻¹ , [13]
CMS, dilepton, 8 TeV		$172.22 \begin{array}{c} +0.91 \\ -0.95 \end{array} (0.18 \begin{array}{c} +0.89 \\ -0.93 \end{array})$	19.7 fb ⁻¹ , [14]
CMS, all jets, 8 TeV		$172.32 \pm 0.64 \ (0.25 \pm 0.59)$	19.7 fb ⁻¹ , [13]
CMS, single top, 8 TeV	+-1	172.95 ± 1.22 (0.77 ^{+0.97} _{-0.93})	19.7 fb ⁻¹ , [15]
CMS comb. (Feb 2024), 7+8 TeV		172.52 ± 0.42 (0.14 ± 0.39)	≤ 19.7 fb ⁻¹ [1]
CMS, all jets, 13 TeV		$172.34 \pm 0.73 \ (0.20 \ +0.00 \ -0.72)$	35.9 fb ⁻¹ [16]
CMS, dilepton, 13 TeV		172.33 ± 0.70 (0.14 ± 0.69)	35.9 fb ⁻¹ , [17]
CMS, I+jets, 13 TeV		171.77 ± 0.37	35.9 fb ⁻¹ , [18]
CMS, single top, 13 TeV		$172.13 \begin{array}{c} +0.13 \\ -0.77 \end{array} (0.32 \begin{array}{c} +0.03 \\ -0.71 \end{array})$	35.9 fb ⁻¹ , [19]
CMS, boosted, 13 TeV	-1	173.06 ± 0.84 (0.24)	138 fb ⁻¹ , [20]
	 [1] arXiv:2402.08713 [2] arXiv:1403.4427 	[8] JHEP 06 (2023) 019 [15] C [9] ATLAS-CONF-2022-058 [149] c	MS-PAS-TOP-22-001
	[3] EPJC 75 (2015) 330	[10] JHEP 12 (2012) 105 [17] E	PJC 79 (2019) 368
* Preliminary	[4] EP3C 75 (2015) 156 [5] PLB 761 (2016) 350	[11] EPJC 72 (2012) 2202 [18] E [12] EPJC 74 (2014) 2758 [18] E	PJC 83 (2023) 963
	[6] JHEP 09 (2017) 118 [7] EPJC 79 (2019) 290	[13] PRD 93 (2016) 072004 [19] J [14] PRD 93 (2016) 072004 [20] E	HEP 12 (2021) 161 PJC 83 (2023) 560
		f f f f f f f	
165 170	1/5	180	185
m _{top} [GeV]			

 $\alpha_{\rm S}$

- The only QCD free parameter (except for quark masses)
- The least precisely known of the SM couplings (~0.8%)
- Best results typically obtained with lattice QCD
- Recent measurement has competitive precision using Z differential cross-section measurement (Z pT) compared to theory accurate at N3LO+N4LL
- Running is typically tested using highly energetic jets at LHC
 - Azimuthal correlations among jets
 - Energy correlators inside jets
 - Jet cross-sections and their ratios (e.g. 3-jet to 2-jet cross-section ratio)
 - —> Simultaneous determination of PDFs
 - Different beta function in BSM physics, affect the running!

Going beyond the SM : SM EFT

12

- Try to constrain higher dimensional operators from all available data
 - New physics could be at such a high energy scale that we cannot see the new resonances at the LHC, but still impact observables at lower energies —> Parametrise with operators of dimension n, Wilson coefficients and energy scale of NP

- Example : Combined Higgs fit
 - p-value of compatibility between data and SM is 94.5%
- See also Anne-Catherine's and Tevong's talks

SM EFT and multiboson processes

$$\mathcal{L}_{\text{SM EFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{\text{dim6}}}{\Lambda^{2}} Q_{i}^{\text{dim6}} + \sum_{i} \frac{c_{i}^{\text{dim8}}}{\Lambda^{4}} Q_{i}^{\text{dim8}} + ...$$

- Effect of operators typically growing with $(E/\Lambda)^n \longrightarrow$ measure in energy tails \longrightarrow cf Dario's talk!
 - Anomalous triple gauge couplings (aTGCs): Dibosons (WW, WZ, Wγ) and VBF production (Zjj, Wjj)
 - Neutral triple gauge couplings (nTGCs): ZZ and Zγ
 - Anomalous quartic gauge couplings (aQGCs): Triboson, VBS production of boson pairs, exclusive WW
- VBS: provides a direct probe of the triple and quartic gauge boson couplings.
 - Scattering amplitude is expected to increase with centre of mass energy. Violation of unitarity
 is avoided thanks to contribution of Higgs exchanges in the s- and t-channels
 - Modification of Higgs coupling to vector bosons will change this more visible in longitudinally polarized boson scattering amplitudes
- More on this in Zhen's talk!

Concluding remarks

- Standard Model: several loopholes, need to hunt for deviations
 - Ball is in the camp of experimentalists, but strong theory input is required!
 - Precise measurements help tracking these and improve knowledge of QCD/EW physics

