

Current status and prospects of CPT tests with neutrino oscillation experiments

Tran Van Ngoc ⁽¹⁾ S. Cao, N. T. Hong Van, P. T. Quyen

(1): JSPS International Research Fellow (Kyoto University)

PASCOS, ICISE, 9 July 2024

Contents

- 1. Introduction
- 2. Current status of CPT tests
- Prospects of CPT tests with neutrino oscillation experiments
- 4. Conclusion

1. Introduction

Testing CPT invariance with neutrino oscillation experiments

3 x 3 PMNS unitary matrix: 3 mixing angles ($\theta_{12}, \theta_{13}, \theta_{23}$), 1 CP-violating phase δ_{CP}

Oscillation probability $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = |\langle \nu_{\beta} | \nu_{\alpha} \rangle|^{2} = \begin{vmatrix} \nu \text{ mass} \\ \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-i\frac{m_{i}^{2}L}{2L}} \\ \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-i\frac{m_{i}^{2}L}{2L}} \\ \theta_{12}, \theta_{13}, \theta_{23}, \delta_{CP} \end{vmatrix} \qquad \text{distance traveled}$

• Under CPT transformation: $(\nu_{\alpha} \rightarrow \nu_{\beta}) \xrightarrow{CPT} (\overline{\nu}_{\beta} \rightarrow \overline{\nu}_{\alpha})$

1. Introduction

Testing CPT invariance with neutrino oscillation experiments

- CPT asymmetry: $\mathscr{A}_{CPT} = P(\nu_{\alpha} \to \nu_{\beta}) P(\overline{\nu}_{\beta} \to \overline{\nu}_{\alpha})$
- Accelerator-based experiments (T₂K, NOvA, Hyper-K, DUNE) study 4 channels: $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\mu}$
- Accelerator-based experiments do not test CPT symmetry via appearance channels since they don't focus on $\overline{\nu}_e \rightarrow \overline{\nu}_\mu$ channel
- Accelerator-based experiments can test CPT by their own disappearance channels $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}) \approx 1 - \sin^{2} 2\overline{\theta}_{23} \sin^{2} \left(\frac{\Delta \overline{m}_{31}^{2} L}{\sqrt{4E}} \right)$ $\mathscr{A}_{\mu\mu}^{CPT}(\sin^{2} \theta_{23}) \qquad \mathscr{A}_{\mu\mu}^{CPT}(\Delta m_{31}^{2})$

 $\propto \delta_{\nu\overline{\nu}}(\sin^2\theta_{23}) = \sin^2\theta_{23} - \sin^2\overline{\theta}_{23} \qquad \propto \delta_{\nu\overline{\nu}}(\Delta m_{31}^2) = \Delta m_{31}^2 - \Delta \overline{m}_{31}^2$

2. Current status of CPT tests

Current bounds on the direct CPT tests [arXiv:2111.04056 hep-ex] SME coefficient (GeV) 10-19 10^{-27} 10^{-23} 10^{-3} 10-15 10^{-11} 10^{-7} H-H HFS H-H 1S - 2S $K^0-\overline{K^0}$ mass p-<u>p</u> mass p-<u>p</u> q/m p-p magnetic moment e⁻-e⁺ mass $e^{-}-e^{+}$ charge μ^{\pm} magnetic moment e[±] magnetic moment d-d mass ³He-³He mass 10^{-23} 10^{-15} 10^{-19} 10^{-27} 10^{-11} 10^{-7} 10^{-3} **Relative precision**

• Current best constraint in terms of relative mass difference is given by $K^0 - \overline{K}^0$ system:

$$\left|\frac{m(K^{\circ}) - m(\overline{K}^{\circ})}{m_{K}}\right| < 6 \times 10^{-19}$$

 This value looks very stringent. However, when converted to mass squared difference, it becomes much weaker

$$m^2(K^\circ) - m^2(\overline{K}^\circ) < 0.3 \ eV^2$$

2. Current status of CPT tests

The most up-to-date bounds on CPTV at $3\sigma C.L$. with ν experiments [arXiv:2305.06384v1]

• In terms of mass squared difference, neutrino oscillation provides few orders better constraint on CPTV than neutral Kaon system

2. Current status of CPT tests

Current measurements of T2K, NOvA, and DayBay experiments

NO is assumed	T2K (3.6e21 POTs) <i>P.R.D 108 (2023) 7, 072011</i>	NOvA (2.1e21 POTs) Mendez PhD thesis (2019)	DayaBay (3158 days) P.R.L 130, 161802 (2023)	Combined
$\Delta m_{31}^2 / 10^{-3} eV^2$	$2.55^{+0.05}_{-0.06}$	$2.56^{+0.07}_{-0.09}$		$2.55^{+0.04}_{-0.05}$
$\Delta \overline{m}_{31}^2 / 10^{-3} eV^2$	$2.60^{+0.10}_{-0.11}$	$2.63^{+0.12}_{-0.13}$	$2.54^{+0.06}_{-0.06}$	$2.57^{+0.05}_{-0.05}$
$\delta(\Delta m_{31}^2)/10^{-3} eV^2$	$0.05^{+0.11}_{-0.12}$	$0.07^{+0.14}_{-0.16}$		$0.02^{+0.06}_{-0.07}$

- Current T2K and NOvA data are consistent with CPT conservation hypothesis
- Combined data of T2K, NOvA, and Daya Bay is consistent with CPT conservation hypothesis
- Combine with DayaBay data significant improves the precision on $\Delta \overline{m}_{31}^2$

• GLoBES: The General Long Baseline Experiment Simulator

- Use disappearance channels only
- In this report, we only focus on parameter $\delta(\Delta m_{31}^2)$

• GLoBES setup for T2K, NOvA, JUNO, Hyper-K, and DUNE

	T2K	NOvA	JUNO	Hyper-K	DUNE
Baseline (km)	295	810	52,5	295	1285
Matter density g/cm ³	2,6	2,8	2,6	2,6	2,85
Detector mass (kt)	22,5	14	20	187	40
Exposure	$10 \times 10^{21} POT$	$7.2 \times 10^{21} POT$	6 years	10 years	10 years nominal
Power	0.77 MW	0.74 MW	26.6 GWth	1.3 MW	1.2 MW

• The exposures of T₂K and NOvA are expected at the end of their runs

• JUNO will have better than 0.5% precision on $\Delta \overline{m}_{31}^2 =>$ it can help to improve constraint on CPTV when combined data of other experiments with JUNO

The bounds on CPTV with $\delta(\Delta m_{31}^2)$ at $3\sigma C \cdot L$. from different experimental configurations

$sin^2\theta_{23}$	Hyper-K +JUNO	Hyper-K $\nu : \bar{\nu} = 1 : 3$	DUNE + JUNO	DUNE $\nu : \bar{\nu} = 1 : 1$	T2K+NOvA+ JUNO
0,45	1.94E-05	2.76E-05	2.93E-05	5.54E-05	5.75E-05
0,50	1.89E-05	2.64E-05	2.83E-05	5.28E-05	5.33E-05
0,60	2.05E-05	2.91E-05	3.09E-05	5.83E-05	6.15E-05

- Assume CPT is conserved, we calculate the bound on CPTV with $\delta(\Delta m_{31}^2)$ at $3\sigma C.L$. within 3σ range of $\sin^2 \theta_{23}$ [0.40 0.62]
- 0.1^{×10⁻³} Hyper-K will provide the DUNE 0.09 **DUNE+JUNO** best constraint on the Hyper-K 0.08 CPTV in terms of Δm_{31}^2 Hyper-K+JUNO constraint T2K+NOvA+JUNO 0.07 among single detector Hyper-K + DUNE 0.06 experiments 3d 0.05 Hyper-K + JUNO will give at m²) 31 0.04 best constraint on the δ(Δ 0.03 CPTV among the considered experimental 0.02 configurations 0.01 8.4 8.4 0 42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 $sin^2\theta_{a}$

1 sigma uncertainty	HyperK (TDR) arXiv:1805.04163v2	DUNE FPJC (2020) 80:978
$\Delta m_{31}^2 \ eV^2$	1.5×10^{-5}	1.0×10^{-5}
$\Delta \overline{m}_{31}^2 eV^2$	1.5×10^{-5}	1.0×10^{-5}
$\delta(\Delta m_{31}^2) \ eV^2$	2.1×10^{-5}	1.4×10^{-5}

- We are developing a framework for global data fit using GLoBES
 - Update GLoBES to include interested oscillation parameters for anti-neutrino
 - Validate the experiments with real setups and their released data
 - Combine the data for the experiments
- We have tried to validate the T2K
 - Thinking of how to evaluate the difference between the two as an uncertainty in the data fit result

4. Conclusion

- Current T2K, NOvA and combined T2K+NOvA+DayaBay data are consistent with CPT conservation
- Hyper-K will provide the best constraint on CPTV in terms of $\delta(\Delta m_{31}^2)$ among the single detector experiments
- Hyper-K + JUNO has best constraint to the CPTV among the considered configurations
- HyperK can exclude CPT conservation at $(5.5\sigma) \ 3.2\sigma \ C \cdot L$. if the current best fits of (NOvA) T2K on Δm_{31}^2 and $\Delta \overline{m}_{31}^2$ are still true until ~2037
- DUNE can exclude CPT conservation at $(3.2\sigma) 2.0\sigma C \cdot L$. if the current best fits of (NOvA) T₂K on Δm_{31}^2 and $\Delta \overline{m}_{31}^2$ are still true until ~2037
- A framework for global data fit on CPTV constraint has being developed

Acknowledgement

 This study is supported by National Foundation for Science and Technology Development (NAFOSTED) of Vietnam under Grant No. 103.99-2023.144