

MODEL AGNOSTIC SEARCHES IN FINAL STATES WITH JETS AT ATLAS

ANTONIO D'AVANZO, on behalf of the ATLAS Collaboration

29° Symposium on Particles, String and Cosmology (PASCOS 2024), 09/07/2024, Quy Nhon

Introduction

ATLAS Prelimin

VE = 8, 13 Tel

171.2001 1707.04.07 170.04.07 170.04.07 170.04.07 170.04.07 170.04.07 170.04.07 170.05

- Standard Model (SM) remarkably predictive of experimental results
 - discovery of the Higgs boson in 2012 by ATLAS and CMS
- Open questions: many Beyond Standard Model theories (Dark Matter, Gravity, Hierarchy problem ecc.)
- > Search for new resonances decaying into hadronic final states jj (jets) \rightarrow localized excesses (bumps) over expected background m_{ij}

To be or not to be model-dependent?

Model dependent approach:

- A new well motivated physics-scenario is chosen
- The search is maximized based on signal signatures (supervised machine learning methods)
- Unlikely to be sensitive to different process

Model independent approach:

- Minimal assumptions of signal properties
- Deviations from background-only hypothesis (methods often provided by Machine Learning)
- Not optimal as model-dependent, but more prone to generality

In this review

- Full Run 2 (2015-2018, 140 fb⁻¹) of LHC data (beside n. 4), pp centre of mass energy 13 TeV
 - Results interpreted with 95% Confidence Levels
 - 1. Search for new phenomena in dijet events using quark tagging
- 2. Weakly-supervised anomaly detection for resonant new physics in the dijet final state
- 3. Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states
- 4. Search for Low-Mass Dijet Resonances Using Trigger Level Analysis

Non supervised Anomaly Detection

- > Anomaly Detection (AD) refers to Machine Learning (ML) techniques used to spot these outliers.
- \succ Particle physics \rightarrow Identification of features of detector data inconsistent with the expected background.
- Machine learning techniques exploited: semi-supervised (partial labels), <u>weakly-supervised</u> (noisy labels) and <u>unsupervised</u> (no labels)

Search for new phenomena in dijet events using quark tagging

Search of new resonances in jet pairs

- > Search for resonant decays of heavy BSM particles strongly coupled to quarks/gluons
 - $ightarrow m_{ij}$ spectrum ranges from 1.1 to 8 TeV
 - > 3 signal regions: Inclusive jets content and 1 or 2 b-jets required
 - > Trigger efficiency cuts on jets kinematics, invariant mass and $y^* = \frac{y_1 y_2}{2}$
- \blacktriangleright Results interpreted with many new physics scenarios, but also generic Gaussian-shaped narrow-resonance $G(m_X, \sigma_X)$

Results

JHEP03(2020)145

- $\blacktriangleright\,$ Main QCD background estimated with smoothly falling fit functions on the m_{jj} distribution
- > No significant deviation from background
 - Upper limits on cross sections estimated from fit considering the several signal hypothesis

Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states

$\mathbf{Y} \rightarrow \mathbf{XH}$ overview

- > Search for a heavy-mass resonance Y decaying in a Higgs boson ($H \rightarrow b\bar{b}$) and a new particle X in the fully hadronic channel
- $\blacktriangleright\,$ Mass range: m_Y in I 6 TeV range, m_X in 65 3000 GeV range \rightarrow boosted regime for H boson
- > Signal regions:
 - > Model dependent: 2-prong (X \rightarrow q \bar{q}) boosted (m_X/m_Y < 0.3) and resolved (m_X/m_Y > 0.3)
 - Model independent: anomalous X hadronic decay in large-R jet

➢ Background is mainly composed of QCD dijet events (~97%), estimated fully data-driven (Machine Learning approach) → more in backup

Model independent signal region

- > X and H candidate associated to pT-leading and –subleading jets, ambiguity resolved by H $\rightarrow b\bar{b}$ tagger based on Deep Neural Network
 - > Discriminant $D_{H_{hb}}$ score computed from NN outputs per jet \rightarrow H candidate chosen by highest score criteria
- > H candidate is further tagged if $D_{H_{bb}}$ > 2.44
- > X candidate tagged with discriminant from fully data-driven anomaly detection

Anomaly detection X tagging

- Fully unsupervised (<u>first in ATLAS</u>) variational recurrent neural network (VRNN)
 - Trained over constituents of jets with p_T > 1.2 TeV modeled as sequence of four-vectors
- Anomaly score computed from VRNN output
 - Sensitive to alternative X decay hypothesis other than 2-prong (e.g. heavy flavor, three-prong and dark jet)

Results

Phys.Rev.D 108 (2023) 052009

- \blacktriangleright Fit performed on final state invariant mass distribution m_{jj} in SR of data, repeated several times in overlapping bins of the X candidate mass
- Calculated stat-only p-value to test compatibility with background only hypothesis
- > Max deviation: 1.43 σ global significance due to the several search regions defined

Weakly-supervised anomaly detection for resonant new physics in the dijet final state

CWoLa hunting

Phys. Rev. Lett. 125 (2020) 131801

В

С

А

q

Leading

large-R jets

Sub-leading

large-R jets

10⁰

- \blacktriangleright Classification Without Labels (CWoLa) method used for A \rightarrow BC search
 - ➤ mass range: 1.1 ~8 TeV
- > 6 signal regions by m_{ii} splitting, jets mass > 30 and < 500 GeV, $|\Delta y|$ < 1.2
- Classifier trained on two samples DI and D2, mixtures of signal and background, to produce discriminant output
 - \blacktriangleright Input variables: m_1, m_2 (pT leading jets)

CWoLa hunting results

- > Upper limits on signal cross section, benchmark models compared with other diboson searches
 - Different values of signal selection efficiency, 0.1 and 0.01
 - > QCD background estimation in SR done with functional fits
- > CWoLa performs better when local signal-to-background ratio is high

Search for Low-Mass Dijet Resonances Using Trigger Level Analysis

Trigger Level Analysis (TLA)

- Low pT jets physics (200 440 GeV) is tossed in ATLAS due to trigger limitations
- > ATLAS normally stores the entire detector output for triggered events, limiting the rate at which events can saved
- Trigger Level Analysis chains record only the output of HLT reconstruction o(3kB/event) at extremely high rate o(3kHz)
 - Jets included (~15% of total trigger decisions)

TLA search in fully hadronic final states

PRL 121 081801

- Electroweak-TeV scale should be studied throughtly, as W, Z, Higgs boson and top are all found there
 - \blacktriangleright Current single jet HLT trigger (pT > 440 GeV) constraints $m_{jj} \gtrsim$ 1.5 TeV
- > TLA can be used to recover sensitivity at the TeV scale! \rightarrow HLT reconstructed jets and event header
 - No calorimeter cells, constituents, hits or tracks are saved, no offline reconstruction
 - > TLA jets calibrated to match offline reconstructed jets
- > Model independent, benchmark model used to set upper limits on coupling constant g_q (29.3 fb⁻¹)

Benchmark model: DM mediator

TLA search results

- > Background estimated with functional fit of subranges with sliding window
- > No bump found \rightarrow factor 2-5x improvement in coupling constant limits w.r.t. other searches for lower masses

Conclusions

- ➢ No new interactions and particles since the Higgs boson's discovery → more generic searches opposed to the existing model-dependent analysis standard
- > Model agnostic searches with jets in final state becoming a main topic in the ATLAS collaboration
- > Exploited LHC Run 2 data collected by ATLAS, also moving on to Run 3 data
 - > Run 2: TLA analysis, CWoLa, search for resonances with quark tagging, YXH
 - > Run 3: Anomaly Detection with Graph Neural Networks
- Honorable mentions: Anomaly Detection search with Run 2 data (<u>Phys. Rev. Lett. 132, 081801</u>), search for signatures of Soft Unclustered Energy Patterns
- > Take home message: Model agnostic searches can be a powerful tool that is complementary to beyond standard model dependent searches approach

Stay tuned and thank you for your attention!