Resonances all over the place?

G. Moultaka

Laboratoire Univers & Particules de Montpellier (LUPM) CNRS & University of Montepllier

work in collaboration with A. Kundu & P. Mondal

and a lot ... a lot of discussions with F. Richard

PASCOS2024 ICISE, Quy Nhon, Vietnam, July 7-13 2024

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 1/20

Outline

Introductory motivations

The experimental indications

3 Models?...Model?

G. Moultaka, LUPM-Montpellier

< ロ > < 同 > < 回 > < 回 >

Many motivations to go beyond the SM, that we all know!

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 3/20

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 4/20

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 4/20

a 'theorem' by Nelson Mandela

(not to be confused with the Coleman-Mandula theorem)

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 4/20

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 4/20

< ロ > < 回 > < 回 > < 回 > < 回</p>

The experimental indications

New scalar	Process studied	Local	Global	Combined	Reference
		Significance	Significance	Significance	
h_{95}	$\rightarrow \gamma \gamma$	2.9σ	1.3σ		[6, 7, 18]
	$\rightarrow \tau^+ \tau^-$	$2.6-3.1\sigma$	$2.3-2.7\sigma$	2.4 - 2.75σ	[8]
	$Z^* \to Z h_{95} \to Z b \bar{b}$	2.3σ	not quoted	3.1 - 3.4σ	[33]
H ₆₅₀	$VBF, \rightarrow W^+W^-$	3.8 <i>0</i>	$(2.6\pm0.2)\sigma$		[12]
	$\rightarrow ZZ$	2.4σ	0.9σ	$\left(4.08^{+0.12}_{-0.11} ight)\sigma$	[10, 11]
	$\rightarrow h_{95}h_{125}$	3.8σ	2.8σ		[13]
	$\rightarrow A_{400}Z \rightarrow \ell^+\ell^- t\bar{t}$	2.85σ	2.35σ		[16]
A400	$\rightarrow t\bar{t}$	3.5σ	1.9σ	3.17σ	[14]
	$\rightarrow ZH_{320} \rightarrow Zh_{125}h_{125}$	3.8σ	2.8σ		[15]

Combined Significance= our combination of global significances

[6,7,18] CMS-PAS-HIG-14-037; CMS [arXiv:1811.08459 [hep-ex]]; T. Biekötter et al. [arXiv:2203.13180 [hep-ph]]; + many more [8] CMS-PAS-HIG-21-001 [33] LEP [arXiv:hep-ex/0306033 [hep-ex]]

[12] CMS-PAS-HIG-20-016

[10,11] ATLAS [arXiv:2009.14791 [hep-ex]], [arXiv:2103.01918 [hep-ex]]

[13] CMS-PAS-HIG-21-011

[16] ATLAS [arXiv:2311.04033 [hep-ex]]

[14] CMS [arXiv:1908.01115 [hep-ex]]

[15] ATLAS-CONF-2022-043

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 5/20

CMS PAS HIG-20-016 (2022/03/11)

20

Table 3: Summary of the signal hypotheses with highest local significance for each f_{VBF} scenario. For each signal hypothesis the resonance mass, production cross sections, and the local and global significances are given.

11 Summary

We performed a search for a high mass Higgs boson decaying into a pair of W bosons in the dileptonic channel. We observe an upward fluctuation of data compared to the expected background. The signal hypothesis with the highest significance corresponds to a resonance mass of 650 GeV in the scenario where only VBF production is considered. The global significance of this excess is 2.6σ .

The presence of a heavy SM-like Higgs boson is excluded at 95% CL up to 2100 GeV, assuming the relative contribution of ggF and VBF production is SM-like and also assuming only VBF production. The exclusion is up to about 800 GeV when considering only ggF production. In the case where the ratio between ggF and VBF production is left floating in the fit, an exclusion of up to 900 GeV is observed.

In MSSM scenarios the analysis is sensitive at low values of m_A and $\tan \beta$ and the exclusion limits extend up to $m_A = 450 \text{ GeV}$. For m_A between 150 GeV and 00 GeV, we exclude values of $\tan \beta$ between 10 and 3. The sensitivity is similar between the M_h^{157} , M_h^{127} , M_h^{127} , $\tilde{(7)}$, $M_{h,\text{BeT}}^{227}$, and $M_{h,\text{BeT}}^{227}$, $M_{h,\text{BeT}}^{227$

In THDM scenarios, the limits show an exclusion of up to 750 GeV in THDMs of both Type-I and Type-II. For $\cos(\beta - \alpha) = 0.1$, the limits in $\tan \beta$ extend up to 4 in Type-II and up to 5 in Type-I, with the sensitivity generally becoming lower for higher masses of H. The sensitivity over $\tan \beta$ varies more strongly as a function of $\cos(\beta - \alpha)$.

Extrapolation studies were performed to evaluate the expected gain in sensitivity for the Phase-2 operations of the HL-LHC. The upper limits on the product of the cross section and branching ratio of a new resonance are expected to be improved by almost one order of magnitude. The expected exclusion range in MSSM scenarios increases by only about SO₆eV along the $m_{\rm s}$ axis. The increase in sensitivity is more noticeable for a general THDM, with the exclusion extending from 1000 GeV up to 1500 GeV for low values of tan β .

right), floating func (bottom left) and the SM func scenarios (bottom right).

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 7/20

æ

 While an h₉₅ object could be accounted for within several (SUSY or non-SUSY) model settings, doublets,...

- While an h₉₅ object could be accounted for within several (SUSY or non-SUSY) model settings, doublets,...
- H₆₅₀ proves more rebellious!

- While an h₉₅ object could be accounted for within several (SUSY or non-SUSY) model settings, doublets,...
- *H*₆₅₀ proves more rebellious!
- coupling to WW very close to SM-like → potential violation of unitarity sum rules for WW scattering!

- While an h₉₅ object could be accounted for within several (SUSY or non-SUSY) model settings, doublets,...
- *H*₆₅₀ proves more rebellious!
- coupling to WW very close to SM-like → potential violation of unitarity sum rules for WW scattering!

$$g_{WWh}^2 = \sum_i g_{W^+W^-\phi_i^0}^2$$
(SM)

G. Moultaka, LUPM-Montpellier

PASCOS2024, ICISE, Quy Nhon 7/20

- While an h₉₅ object could be accounted for within several (SUSY or non-SUSY) model settings, doublets,...
- *H*₆₅₀ proves more rebellious!
- coupling to WW very close to SM-like → potential violation of unitarity sum rules for WW scattering!

$$g_{WWh}^2 = \sum_i g_{W^+W^-\phi_i^0}^2 - \sum_k |g_{W^-W^-\phi_k^{0^{++}}}|^2$$
(SM)

→ at least one doubly-charged scalar is needed!

 \rightarrow a consistent model needs (at least one) SU(2)_L triplet

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 8/20

- $\rightarrow\,$ a consistent model needs (at least one) $\rm SU(2)_L$ triplet
- $\rightarrow\,$ only one (e.g. Type II seesaw) would not work: $\rho\simeq$ 1 \Rightarrow single production of H_{650} suppressed

- \rightarrow a consistent model needs (at least one) SU(2)_L triplet
- $\rightarrow\,$ only one (e.g. Type II seesaw) would not work: $\rho\simeq$ 1 \Rightarrow single production of H_{650} suppressed
- \rightarrow two (e.g. Georgi-Machacek) disfavored, $H_{650}ZZ \sim 2.6 \times H_{650}WW$

3

イロト 不得 トイヨト イヨト

- \rightarrow a consistent model needs (at least one) SU(2)_L triplet
- $\rightarrow\,$ only one (e.g. Type II seesaw) would not work: $\rho\simeq$ 1 \Rightarrow single production of H_{650} suppressed
- \rightarrow two (e.g. Georgi-Machacek) disfavored, $H_{650}ZZ \sim 2.6 \times H_{650}WW$
- \rightarrow two triplets + one extra doublet?

-

イロト 不得 トイヨト イヨト

- $\rightarrow\,$ a consistent model needs (at least one) $\rm SU(2)_L$ triplet
- → only one (e.g. Type II seesaw) would not work: $\rho \simeq 1 \Rightarrow$ single production of H_{650} suppressed
- \rightarrow two (e.g. Georgi-Machacek) disfavored, $H_{650}ZZ \sim 2.6 \times H_{650}WW$
- → two triplets + one extra doublet? → opens new possibilities: can fit the three (CP-even) states h_{125}, h_{95}, H_{650} + an extra H_{320}

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \phi_{1}^{0} \end{pmatrix}, \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \phi_{2}^{0} \end{pmatrix}, X = \begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ -\chi^{+*} & \xi^{0} & \chi^{+} \\ \chi^{++*} & -\xi^{+*} & \chi^{0} \end{pmatrix}$$
$$\begin{pmatrix} \mathcal{H}_{1} \\ \mathcal{H}_{2} \\ \mathcal{H}_{3} \\ \mathcal{H}_{4} \end{pmatrix} = \mathcal{X}_{4 \times 4} \begin{pmatrix} \operatorname{Re}\phi_{1}^{0} \\ \operatorname{Re}\phi_{2}^{0} \\ \operatorname{Re}\chi^{0} \\ \xi^{0} \end{pmatrix}, \quad \mathcal{X}^{\dagger}\mathcal{X} = \mathcal{X}\mathcal{X}^{\dagger} = 1, \quad [\mathcal{X}]_{ij} \equiv x_{ij}$$

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 9/20

æ

<ロ> (日) (日) (日) (日) (日)

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \phi_{1}^{0} \end{pmatrix}, \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \phi_{2}^{0} \end{pmatrix}, X = \begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ -\chi^{+*} & \xi^{0} & \chi^{+} \\ \chi^{++*} & -\xi^{+*} & \chi^{0} \end{pmatrix}$$
$$\begin{pmatrix} \mathcal{H}_{1} \\ \mathcal{H}_{2} \\ \mathcal{H}_{3} \\ \mathcal{H}_{4} \end{pmatrix} = \mathcal{X}_{4 \times 4} \begin{pmatrix} \operatorname{Re}\phi_{1}^{0} \\ \operatorname{Re}\phi_{2}^{0} \\ \operatorname{Re}\chi_{0}^{0} \\ \xi^{0} \end{pmatrix}, \quad \mathcal{X}^{\dagger}\mathcal{X} = \mathcal{X}\mathcal{X}^{\dagger} = 1, \quad [\mathcal{X}]_{ij} \equiv x_{ij}$$

 \rightarrow Identify $\mathcal{H}_{a=1,...,4} = (h_{95}, h_{125}, H_{320}, H_{650})$

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 9/20

æ

$$\Phi_{1} = \begin{pmatrix} \phi_{1}^{+} \\ \phi_{1}^{0} \end{pmatrix}, \Phi_{2} = \begin{pmatrix} \phi_{2}^{+} \\ \phi_{2}^{0} \end{pmatrix}, X = \begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ -\chi^{+*} & \xi^{0} & \chi^{+} \\ \chi^{++*} & -\xi^{+*} & \chi^{0} \end{pmatrix}$$
$$\begin{pmatrix} \mathcal{H}_{1} \\ \mathcal{H}_{2} \\ \mathcal{H}_{3} \\ \mathcal{H}_{4} \end{pmatrix} = \mathcal{X}_{4 \times 4} \begin{pmatrix} \operatorname{Re}\phi_{1}^{0} \\ \operatorname{Re}\phi_{2}^{0} \\ \operatorname{Re}\chi^{0} \\ \xi^{0} \end{pmatrix}, \quad \mathcal{X}^{\dagger}\mathcal{X} = \mathcal{X}\mathcal{X}^{\dagger} = 1, \quad [\mathcal{X}]_{ij} \equiv x_{ij}$$

 \rightarrow Identify $\mathcal{H}_{a=1,...,4} = (h_{95}, h_{125}, H_{320}, H_{650})$

 \rightarrow extended Georgi-Machacek, $\langle \phi_1^0 \rangle \sim v_1, \langle \phi_2^0 \rangle \sim v_2, \langle \chi \rangle = \langle \xi \rangle \sim u$

G. Moultaka, LUPM-Montpellier

PASCOS2024, ICISE, Quy Nhon 9/20

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Coupling to two gauge bosons

$$\mathcal{L}_{\text{cubic}} = \frac{g^2 v_1}{2\sqrt{2}} S_1 \ W \cdot W + \frac{g^2 v_2}{2\sqrt{2}} S_2 \ W \cdot W + \frac{2g^2 u}{\sqrt{3}} S_3 \ W \cdot W + g^2 u \left[W \otimes W \right] \cdot F$$

$$\begin{split} & v \kappa_W^{\mathcal{H}_a} = v_1 x_{a1} + v_2 x_{a2} + 2u(x_{a3} + \sqrt{2}x_{a4}), \\ & v \kappa_Z^{\mathcal{H}_a} = v_1 x_{a1} + v_2 x_{a2} + 4u x_{a3}, \\ & v^2 = v_1^2 + v_2^2 + 4u^2 \simeq \left(\frac{246}{\sqrt{2}}\right)^2, \end{split}$$

Yukawa couplings:

Type – II 2HDM :
$$\kappa_d^{\mathcal{H}_a} = \frac{V}{V_1} X_{a1}$$
, $\kappa_u^{\mathcal{H}_a} = \frac{V}{V_2} X_{a2}$
Type – I 2HDM : $\kappa_d^{\mathcal{H}_a} = \kappa_u^{\mathcal{H}_a} = \frac{V}{V_2} X_{a2}$

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 10/20

・ロト ・ 四ト ・ ヨト ・ ヨト

SM-like h₁₂₅

$$\begin{aligned} v\kappa_W^{h_{125}} = & v_1 x_{21} + v_2 x_{22} + 2u(x_{23} + \sqrt{2}x_{24}), \\ v\kappa_Z^{h_{125}} = & v_1 x_{21} + v_2 x_{22} + 4u x_{23} \\ v^2 = & v_1^2 + v_2^2 + 4u^2 \simeq \left(246/\sqrt{2}\right)^2 \end{aligned}$$

$$\kappa_W^{h_{125}}\simeq\kappa_Z^{h_{125}}\simeq 1\Rightarrow x_{23}-\sqrt{2}x_{24}=0$$

Type – II 2HDM
$$\Rightarrow u^2 = \frac{3}{4} \frac{1 - \kappa_Z^{h_{125}}}{3 - sign(u) 2\sqrt{6}} v^2 \Rightarrow u$$
 very small \rightarrow disvavoured

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 11/20

æ

<ロン <回と < 回と < 回と < 回と

scan strategy

- Stick to Type-I 2HDM-like
- Take X real, orthogonal
- Needs 6 input: e.g. $\kappa_t^{h_{125}}, \kappa_Z^{h_{125}}, \kappa_W^{h_{125}}, \kappa_t^{h_{95}}, \kappa_W^{h_{95}}, \kappa_W^{H_{650}}$
- $h_{125} \Rightarrow u, v_1, v_2, x_{2i}'s$
- subspace orthogonal to x_{2i} , and $h_{95} \Rightarrow x_{1i}'s$
- subspace orthogonal to x_{1i} , x_{2i} , and $H_{650} \Rightarrow$ determines x_{3i} 's and x_{4i} 's, four-fold solutions.
- check compatibility with experimental indications

$$\begin{split} \mu_{\gamma\gamma} &= \frac{\sigma(\textit{pp} \rightarrow \textit{h}_{95} \rightarrow \gamma\gamma)}{\sigma(\textit{pp} \rightarrow \phi \rightarrow \gamma\gamma)} = 0.33^{+0.19}_{-0.12} \,, \\ \mu_{\tau^+\tau^-} &= \frac{\sigma(\textit{pp} \rightarrow \textit{h}_{95} \rightarrow \tau^+\tau^-)}{\sigma(\textit{pp} \rightarrow \phi \rightarrow \tau^+\tau^-)} = 1.2 \pm 0.5 \,, \end{split}$$

$$\mu_{b\bar{b}} = \frac{\sigma(e^+e^- \to Zh_{95} \to Zb\bar{b})}{\sigma(e^+e^- \to Z\phi \to Zb\bar{b})} = 0.117 \pm 0.057$$

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 13/20

PASCOS2024, ICISE, Quy Nhon 13/20

3

ъ PASCOS2024, ICISE, Quy Nhon 13/20

< A

e.g.
$$\kappa_W^{650} = 1.015 \rightarrow u \simeq 69 \text{ GeV}, v_1 \simeq 14 \text{ GeV}, v_2 \simeq 104 \text{ GeV}$$

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 14/20

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

e.g.
$$\kappa_W^{650} = 1.015 \rightarrow u \simeq 69 \text{ GeV}, v_1 \simeq 14 \text{ GeV}, v_2 \simeq 104 \text{ GeV}$$

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 14/20

크

e.g.
$$\kappa_W^{650} = .97 \rightarrow u \simeq 78 \text{ GeV}, v_1 \simeq 16 \text{ GeV}, v_2 \simeq 76 \text{ GeV}$$

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 15/20

æ

e.g.
$$\kappa_W^{650} = .97 \rightarrow u \simeq 78 \text{ GeV}, v_1 \simeq 16 \text{ GeV}, v_2 \simeq 76 \text{ GeV}$$

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 15/20

크

e.g.
$$\kappa_W^{650} = .97 \rightarrow u \simeq 78 \text{ GeV}, v_1 \simeq 16 \text{ GeV}, v_2 \simeq 76 \text{ GeV}$$

	x _{i1}	x _{i2}	x _{i3}	x _{i4}	κ_t	κ_Z	κ_W
h ₉₅	0.6	-0.25	-0.76	-0.01	-0.58	-1.41	-0.74
h ₁₂₅	0.73	0.43	0.44	0.29	0.99	1.04	1.02
H ₃₂₀	0.17	-0.86	0.43	0.2	-1.98	0.4	0.27
H ₆₅₀	-0.26	0.05	-0.23	0.93	0.1	-0.42	0.97

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 15/20

크

e.g.
$$\kappa_W^{650} = .97 \rightarrow u \simeq 78 \text{ GeV}, v_1 \simeq 16 \text{ GeV}, v_2 \simeq 76 \text{ GeV}$$

	x _{i1}	x _{i2}	x _{i3}	x _{i4}	κ_t	κ_Z	κ_W
h ₉₅	0.6	-0.25	-0.76	-0.01	-0.58	-1.41	-0.74
h ₁₂₅	0.73	0.43	0.44	0.29	0.99	1.04	1.02
H ₃₂₀	0.17	-0.86	0.43	0.2	-1.98	0.4	0.27
H ₆₅₀	-0.26	0.05	-0.23	0.93	0.1	-0.42	0.97

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 15/20

æ

e.g.
$$\kappa_W^{650} = 1$$
. $\rightarrow u \simeq 69 \text{ GeV}, v_1 \simeq 14 \text{ GeV}, v_2 \simeq 104 \text{ GeV}$

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 16/20

æ

<ロ> <四> <ヨ> <ヨ>

e.g.
$$\kappa_W^{650} = 1$$
. $\rightarrow u \simeq 69 \text{ GeV}, v_1 \simeq 14 \text{ GeV}, v_2 \simeq 104 \text{ GeV}$

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 16/20

æ

イロン イ理 とく ヨン イヨン

e.g.
$$\kappa_W^{650} = 1. \rightarrow u \simeq 69 \text{ GeV}, v_1 \simeq 14 \text{ GeV}, v_2 \simeq 104 \text{ GeV}$$

	x _{i1}	x _{i2}	x _{i3}	X _{i4}	κ_t	κ_Z	κw
h ₉₅	0.23	-0.34	-0.42	0.81	-0.56	-0.85	0.4
h ₁₂₅	0.65	0.59	0.4	0.26	0.99	1.04	1.02
H ₃₂₀	-0.47	0.73	-0.46	0.2	1.21	-0.33	0.26
H ₆₅₀	-0.55	-0.06	0.68	0.48	-0.1	1.	1.

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 16/20

æ

イロン イ理 とく ヨン イヨン

e.g.
$$\kappa_W^{650} = 1. \rightarrow u \simeq 69 \text{ GeV}, v_1 \simeq 14 \text{ GeV}, v_2 \simeq 104 \text{ GeV}$$

	x _{i1}	x _{i2}	x _{i3}	X _{i4}	κ_t	κ_Z	κw
h ₉₅	0.23	-0.34	-0.42	0.81	-0.56	-0.85	0.4
h ₁₂₅	0.65	0.59	0.4	0.26	0.99	1.04	1.02
H ₃₂₀	-0.47	0.73	-0.46	0.2	1.21	-0.33	0.26
H ₆₅₀	-0.55	-0.06	0.68	0.48	-0.1	1.	1.

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 16/20

æ

イロン イ理 とく ヨン イヨン

What else?

For the VBF production, the maximum deviation is for a signal mass hypothesis around 620 GeV, with a local significance of 2.4 standard deviations and a global significance of 0.9 standard deviation.

Still awaiting CMS to release its ZZ/4lepton analysis!

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 17/20

What else?

ATLAS-CONF-2023-023: Local excess at a resonance mass around 450 GeV, 2.5 (global).

BUT sin $\theta_H \lesssim 0.4 \rightarrow u \lesssim 35 \text{ GeV} \rightarrow \text{too small!}$

Perhaps other decay channels, e.g. to singly charged Higgs, or allow complex $\mathcal{X} \rightarrow$ possible new sources of CP-violation?

G. Moultaka, LUPM-Montpellier

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 18/20

・ロト ・ 四ト ・ ヨト ・ ヨト

What else?

Situation unclear!

Resonances all over the place?

PASCOS2024, ICISE, Quy Nhon 19/20

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Conclusions

- Given the huge data taking at LHC, excesses are occasionally observed in searches for new resonances, that might or might not stand the test of time.
- But if they occur at roughly the same invariant mass, maybe something real is round the corner
- Recent indications for a 650 GeV in various channels, 4σ combined (global) implies SU(2)_L triplets → new neutral, charged, and doubly-charged scalars to look for.
- But not easy to implement \rightarrow extended Georgi-Machacek, including consistently, the 125 GeV, a 95 GeV, and perhaps a \simeq 300 GeV CP-even neutral scalars.
- wait and see what happens with future data...

3

イロト 不得 トイヨト イヨト