Higgs mass and width measurements at ATLAS

PASCOS2024 20th Rencontres du Vietnam

July 9th, 2024

Laura Nasella (Università degli Studi & INFN Milano) on behalf of the ATLAS Collaboration

Motivations behind the measurements 둘

The **Higgs boson mass** m_H is a fundamental <u>free</u> parameter of the Standard Model:

- the Higgs boson *production cross sections* σ and *decay branching ratios*, i.e. the Higgs boson **couplings** with all other particles, are established only when m_H is fixed
- m_H plays a key role in the **global EW fit**, i.e. in the internal consistency of the SM (interplay between the m_t , m_W and m_H)
- the stability of the EW vacuum depends on m_H

Laura Nasella

The **Higgs boson width** Γ_H is predicted in the SM as a function of m_H : $\Gamma_H \sim 4.1$ MeV for $m_H = 125$ GeV.

Measurement needed to:

- Verify the SM predictions
- Solve the degeneracy between couplings and Γ_H : Higgs *production cross sections* as measured in different production and decay gives access to this ratio:

$$\sigma_{i \to H \to f} = \frac{g_i^2 g_f^2}{\Gamma_H}$$

where g_x is the modifier to Hxx coupling

2

Higgs boson mass at ATLAS

The history of the mass measurement in ATLAS **S**

Previous measurements by ATLAS (CMS) with $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ channels:

- Full kinematic reconstruction of the final state
- Best invariant mass resolution (1-2%) on the signal
- **Peak** above a continuum bkg in the $m_{\gamma\gamma}$ or m_{4l} distributions

Phys. Lett. B 843 (2023) 137880

tXX, VV

Z+iets, t

- **ATLAS** --H → ZZ* → 4I - √s = 13 TeV, 139 fb

√ 120 -

sti 100

Electron, photon and muon calibration achievements $\underline{\mathbb{Y}}$

Mass measurement in the $H \rightarrow ZZ^* \rightarrow 4l$ channel

- Events containing at least four isolated leptons (I = e, μ) emerging from a common vertex, forming two pairs of oppositely charged same-flavour leptons.
- 4 channels: 4µ, 2µ2e, 2e2µ, 4e
- Dominant background = non-resonant ZZ* production (~90% of bkg yield)
- Neural Network based discriminant separating signal and background (D_{NN})
- Modelling of per-event resolution (σ_i)
 - The resolution ranges from 1.5 GeV (4µ and 2µ2e) to about 2.1 GeV (2e2µ and 4e)
- Signal PDF modelled as a function of D_{NN} , σ_i and m_{41}

Phys. Lett. B 843 (2023) 137880

Mass measurement in the $H \rightarrow ZZ^* \rightarrow 4l$ channel

Phys. Lett. B 843 (2023) 137880

m_H from a simultaneous unbinned maximum-likelihood fit to the four channels in the mass range between 105 and 160 GeV

Run2 H \rightarrow 4I: m_H = 124.99 ± 0.18 (stat.) ± 0.04 (syst.) = 124.99 ± 0.19 GeV

Also performed combination with Run1 analysis:

0.14% precision

Run1+Run2 H \rightarrow 4I: m_H = 124.94 ± 0.17 (stat.) ± 0.03 (syst.) = 124.94 ± 0.18 GeV

Mass measurement in the $H \rightarrow \gamma \gamma$ channel

Phys. Lett. B 847 (2023) 138315

ATLAS

√s = 13 TeV, 140 fb⁻¹, H→γγ

- Require two good-quality and > Ge isolated photons with $p_T/m_{yy} >$ 0.35 (0.25) S
- 0 . Separate events into 14 $dN/dm_{\gamma\gamma}$ mutually exclusive categories to minimise the total expected uncertainty on m_H
- Ś Model the **signal** and smoothly falling background with analytical functions

800₽

700₽

600₽ 500

400

- Systematic uncertainties included in the model exploit new photon reconstruction with improved energy resolution and calibration
- Systematic uncertainty on m_H dominated by **photon energy scale**

Mass measurement in the $H \rightarrow \gamma \gamma$ channel

Mass measurement in the $H \rightarrow \gamma \gamma$ channel

 m_H from a simultaneous maximum-likelihood fit to the 14 categories in the mass range between 105 and 160 GeV

Run2 H $\rightarrow \gamma\gamma$: m_H = 125.17 ± 0.11 (stat.) ± 0.09 (syst.) = 125.17 ± 0.14 GeV

Also performed combination with Run1 analysis:

0.11% precision

Run1+Run2 H $\rightarrow \gamma\gamma$: m_H = 125.22 ± 0.11 (stat.) ± 0.09 (syst.) = 125.22 ± 0.14 GeV

Now stat. dominated

UNIVERSITÀ DEGLI STUDI

DI MILANO

$H \rightarrow \gamma \gamma + H \rightarrow 4/$ Run1-Run2 combination δ

Phys. Rev. Lett. 131 (2023) 251802

	Uncertainty [GeV]					Uncertainty [GeV]			Uncertainty [GeV]			
	Fitted m _H	Total	Stat.	Syst.	Fitted m _H	Total	Stat.	Syst.	Fitted m _H	Total	Stat.	Syst.
	Н→үү				H→4I				Combination: ≠ channel, = Run			
Run1	126.02	0.51	0.44	0.27	124.51	0.53	0.53	0.03 -	▶125.38	0.43	0.39	0.19
Run2	125.17	0.14	0.11	0.09	124.99	0.18	0.18	0.03 -	125.10	0.11	0.09	0.07
Combination: = channel, ≠ Run	125.22	0.14	0.11	0.09	124.94	0.18	0.17	0.03	125.11	0.11	0.09	0.06

Higgs boson width at ATLAS

Laura Nasella

Measuring the off-shell contribution not straightforward: interference with continuum background

Gluon-gluon (ggF) production

Interference (I)

EW signal (S)

The measurement is performed considering two final states:

- $ZZ \rightarrow 4l$: clean and fully reconstructed final state
- $ZZ \rightarrow 2l2\nu$: six times higher branching ratio

Targeting off-shell contribution from both ggF and EW (VBF+VH) modes

- Three signal regions (SR) are defined after requiring $m_{4l} > 220$ GeV. Events separated in:
 - electroweak-like (require two or more jets with $p_T > 30$ GeV and $|\Delta \eta_{ij}| > 4$),
 - mixed categories = require exactly one jet with $|\eta_j|$ >2.2
 - ggF-like = remaining events
- Normalization of non-interfering background from $qq \rightarrow ZZ$ fitted on data CR

Signal vs bkg discriminated using NN (4/) or transverse mass (2l2v)

Phys. Lett. B 846 (2023) 138223

- Simultaneous fit signal strength and background normalization factors in all signal regions and control regions
- Direct measurement of off-shell signal strength $\mu_{
 m off-shell}$

 $\mu_{\text{off-shell}} = 1.1 \pm \frac{0.7}{0.6}$

with a significance of off-shell production 3.3 (2.2) σ

• Combining the off-shell with on-shell $H \to ZZ^* \to 4l$ measurement to measure Γ_H with correlated (uncorrelated) experimental (theoretical) systematic uncertainties

 Γ_{H} = 4.5 ± $\frac{3.3}{2.5}$ MeV

and 0.5 (0.1) < $\Gamma_{\rm H}$ < 10.5 (10.9) MeV at 95% CL

Phys. Lett. B 846 (2023) 138223

Conclusions @*

- ATLAS made huge efforts in improving the understanding of the detector's performance during Run 2 (140 fb⁻¹ at 13 TeV of centre-of-mass energy) allowing improvements in m_H uncertainty
- The new ATLAS measurements of the Higgs boson mass by combining $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ final states and using $\sqrt{s}=7,8$ and 13 TeV data, resulted in the current most precise m_H measurement with an uncertainty of 0.09%:

Run1+Run2 comb: m_{H} = 125.11 ± 0.11 GeV = 125.11 ± 0.09 (stat.) ± 0.06 (syst.)

• The determination of the Higgs boson width Γ_H is very hard at hadron colliders: exploiting the ratio of off-shell to on-shell Higgs boson production in the ZZ decay channel with reasonable assumptions, ATLAS measured the Higgs boson width:

Γ_{H} = 4.5 ± $\frac{3.3}{2.5}$ MeV, and 0.5 (0.1) < Γ_{H} < 10.5 (10.9) MeV at 95% CL

Thank you for your attention! cảm ơn!

