

RECENT DEVELOPMENTS AND FUTURE **PROSPECTS IN CP** VIOLATION

Francesca Dordei (she/her), INFN - Cagliari (IT)

PASCOS 2024 ICISE Quy Nhon, 9th July 2024

The CKM matrix

- The CKM matrix accommodates the **mixing between mass and flavour eigenstates** of quarks that arises from the EW symmetry breaking, **only measured source of CPV**!
- The SM works so remarkably well that we have to make more and more precise measurements
- O(10-20%) NP contributions to most loop-level processes (FCNC) are still allowed
 - See e.g. J. Charles at al arXiv:1309.2293 [hep-ph]
- Due to the CKM structure the **B system is** favourable for CPV studies. But important to investigate also the charm sector.

Today, selected results from LHCb and Belle II on CP violation!

The LHCb Collaboration

- About 1400
 scientists, engineers
 and technicians
- About 100 different universities and laboratories from more than 20 countries

The LHCb detector in Run 1 & 2 (2011-2018)

The LHCb experimental scenario

The Belle II Collaboration

- About 1200 scientists, engineers and technicians
- About 130 different universities and laboratories from about 30 countries

Super KEKB and Belle II

- \circ $\beta \gamma \sim 0.284$
- $\operatorname{BR}(\Upsilon(4S) \to B\overline{B}) > 96\%$
- Coherent B-meson pair production:
 - one B to determine flavour (tag side)
 - other B for CP measurement (CP side)

The Belle II experimental scenario

\blacktriangleright World record luminosity 4.7×10³⁴ cm⁻²s⁻¹

- Run I: recorded 424 fb⁻¹ of data ~ equivalent to BaBar and 1/2 of Belle data sample
- Run I: Data taken between 2019 2022
- > Run I data at $\Upsilon(4S)$ resonance: 362 fb⁻¹

Today results on this sample!

▶ 42 fb⁻¹ of off-resonance data [60 MeV below Y(4S)]
▶ compared to ~90 fb⁻¹ from Belle
▶ 19 fb⁻¹ above the Y(4S) resonance

Run II has started from early 2024
In total Run I + Run II recorded ~530 fb⁻¹ of data

Hadron colliders

VS

- **Production cross section** $\sigma_{b\overline{b}}$ much larger at hadron colliders \rightarrow Typical $b\overline{b}$ rate of O(100kHz) vs O(10Hz)
- Larger variety of hadron types produced: $B^+B^-(40\%), B^0\overline{B}^0$ (40%), $B_s^0\overline{B}_s^0(10\%), B_c(<0.1\%),$ bbaryons(10%) plus large charm cross-section!
 - Compared to mostly B^+B^- and $B^0\overline{B}^0$
- Larger b-hadron boost: decay vertexes well separated

B-factories

CKM ANGLES

- Experimental checks of Unitarity Triangles are redundant
- ➤ Tree-level dominated processes → SM benchmarks
- Sizeable loop-level diagrams
 Eventual New Physics contributions

B decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[30]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to K^\pm \pi^\mp \pi^+ \pi^-$	18	Run 1&2	New
$B^{\pm} \rightarrow Dh^{\pm}$	$D \to h^+ h^- \pi^0$	[19]	Run $1\&2$	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow K_{ m S}^0 h^+ h^-$	[31]	Run 1&2	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K^0_{ m S} K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before
$B^{\pm} ightarrow D^{*}h^{\pm}$	$D \to h^+ h^-$	[29]	Run $1\&2$	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D ightarrow h^+ h^-$	[33]	Run 1&2(*)	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[33]	Run 1&2(*)	As before
$B^\pm \to D h^\pm \pi^+ \pi^-$	$D ightarrow h^+ h^-$	[34]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D ightarrow h^+ h^-$	[35]	Run 1&2(*)	As before
$B^0 ightarrow DK^{*0}$	$D \to h^+ \pi^- \pi^+ \pi^-$	[35]	Run 1&2(*)	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_{ m S}^0 \pi^+ \pi^-$	[36]	Run 1	As before
$B^0 \to D^{\mp} \pi^{\pm}$	$D^+ \to K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B^0_s ightarrow D^{\mp}_s K^{\pm}$	$D_s^+ \to h^+ h^- \pi^+$	[38]	Run 1	As before
$B^0_s \to D^{\mp}_s K^{\pm} \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[39]	Run $1\&2$	As before
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. [14]
$D^0 ightarrow h^+ h^-$	ΔA_{CP}	[24, 40, 41]	Run 1&2	As before
$D^0 \to K^+ K^-$	$A_{CP}(K^+K^-)$	[16, 24, 25]	Run 2	New
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	42	Run 1	As before
$D^0 ightarrow h^+ h^-$	$y_{CP} - y_{CP}^{K^-\pi^+}$	15	Run 2	New
$D^0 ightarrow h^+ h^-$	ΔY	[43-46]	Run 1&2	As before
$D^0 \to K^+ \pi^-$ (Single Tag)	$R^{\pm},(x'^{\pm})^2,y'^{\pm}$	47	Run 1	As before
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm},(x'^{\pm})^2,y'^{\pm}$	48	Run 1&2(*)	As before
$D^0 \to K^\pm \pi^\mp \pi^+ \pi^-$	$(x^2 + y^2)/4$	49	Run 1	As before
$D^0 ightarrow K_{ m S}^0 \pi^+ \pi^-$	x, y	50	Run 1	As before
$D^0 \to K^0_{\rm S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	51	Run 1	As before
$D^0 \to K^0_{\rm S} \pi^+ \pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	52	Run 2	As before
$D^0 \to K_{\rm S}^0 \pi^+ \pi^- \ (\mu^- \ {\rm tag})$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[17]	Run 2	New

Frequentist approach, 173 observables, 52 parameters

Some γ analyses not included in combination

13

CPV in $B^0 \rightarrow DK^*(892)^0$

- 2 and 4-bodies D decays $(\pi^+\pi^-, K^+K^-, K^\mp\pi^\pm, 4\pi^\pm, K^\pm\pi^\mp\pi^+\pi^-)$
- Simultaneous fit to D final states in B^0/\overline{B}^0 invariant mass to extract CPV observables

CPV in $B^{\pm} \rightarrow D^* h^{\pm}$

- $D^* \to D\pi^0/\gamma$ and $D \to K_s^0 \pi^+ \pi^-/K_s^0 K^+ K^-$
- ° Strong phase inputs from BESIII and CLEO
- **Two approaches:** fully and partially reconstructed final states

 $\circ \quad D_s \rightarrow K^+ K^- \pi^- \text{ , } K^- \pi^+ \pi^- \text{ , } \pi^- \pi^+ \pi^-$

• Need input on the B_s^0 mixing phase $-2\beta_s$

Run II result:

$$\gamma = (74 \pm 11)^{\circ}$$

Negligible correlation within two approaches.

Some γ analyses not included in combination

CPV in $B^0 \rightarrow DK^*(892)^0$

- 2 and 4-bodies D decays $(\pi^+\pi^-, K^+K^-,$ $K^{\pm}\pi^{\pm}, 4\pi^{\pm}, K^{\pm}\pi^{\mp}\pi^{+}\pi^{-})$
- Simultaneous fit to D final states in B^0/\bar{B}^0 invariant mass to extract CPV observables

- CPV in $B^{\pm} \rightarrow D^* h^{\pm}$
- $D^* \rightarrow D\pi^0/\gamma$ and $D \rightarrow K_s^0 \pi^+ \pi^-/K_s^0 K^+ K^-$
- Strong phase inputs from BESIII and CLEO
- **Two approaches:** fully and partially reconstructed final states

Using partially reco final states:

$$\gamma = (92^{+21}_{-17})^{\circ}$$

Negligible correlation within two approaches.

CPV in $B_s^0 \to D_s^{\pm} K^{\pm}$

- $D_s \to K^+ K^- \pi^-$, $K^- \pi^+ \pi^-$, $\pi^- \pi^+ \pi^-$
- Need input on the B_s^0 mixing phase $-2\beta_s$

Run II result:

$$\gamma = (74 \pm 11)^{\circ}$$

State of the art of γ

 $^\circ\,$ Clean test of the SM: measurable with tree-level processes and theoretical uncertainty is ${\sim}10^{-7}$ [JHEP01(2014)051]

Belle II combination $\gamma = (78.6 \pm 7.3)^{\circ}$

[arXiv:2404.12817]

- Slightly above LHCb result and global averages $\gamma = (65.66^{+1.3}_{-1.2})^{\circ}$ [CKMFitter]
- Few ab⁻¹ needed for a meaningful comparison.

Several methods used

- $\succ \text{ GLW } B^{\pm} \rightarrow D^0_{CP} K^{\pm} \text{ [arXiv:2308.05048]}$
 - o Use CP eigenstate of D meson
- > ADS [PRL 78 (1997) 3257]
 - Enhancement of CP violation by using doubly-Cabibbo suppressed decays.
- $\succ \text{BPGGSZ } D^0 \rightarrow K_s h^+ h^- \text{[JHEP 2022(2022)63]}$
 - Different amplitude and strong phase in different region of Dalitz plot.
- $\succ \text{ GLS } D^0 \rightarrow K_s K \pi \text{ []HEP 09(2023)146]}$
 - D-decay strong phase from CLEO-c & BESIII

Likelihood with 60 input observables

- including 15 auxiliary inputs (D-decay)
- 16 free parameters

CKM ANGLES

° Golden channel $B^0 \to J/\psi K_s^0$

 B^0

- Ruled by B^0 mixing and tree-level $b \rightarrow c\bar{c}s$ transitions
 - Penguin contributions are measured to be negligible

State of the art of $sin(2\beta)$ in LHCb

State of the art of $\sin(2\phi_1/\beta)$ in Belle II

- Belle II Run I analysis of $B^0 \rightarrow J/\psi K_s^0$ decays
- Updated results using a **new algorithm that exploits a graph-neural-network**, **GFlaT**, used to determine the flavour of the B meson
- **Performance evaluated on data** using self-tagging $B^0 \rightarrow D^{(*)-}\pi^+$ decays (+18% relative wrt category based FT)

 $\varepsilon_{tag}(CB) = (31.7 \pm 0.5 \pm 0.4) \%$ $\varepsilon_{tag}(GFIaT) = (37.4 \pm 0.4 \pm 0.3) \%$ Uses information from all charged final-state particles (25 variables per track) and the relation between them.

- Uses: $J/\psi \rightarrow \mu\mu$ and $J/\psi \rightarrow ee$
- Fit $\Delta E \equiv E E_{beam}$ distribution to subtract background
- Fit background-subtracted Δt distribution to extract CPV parameters

```
Final Belle II Run I result:
```

- $S = 0.724 \pm 0.035 \pm 0.014 \sim \sin(2\beta)$
- $\circ \ C = -0.035 \pm 0.026 \pm 0.013 \ \text{~~}0$

Statistical uncertainties 8% smaller than with category-based Flavour Taggers.

Time-dependent CPV in charmless B decays

Run I $B \to \eta' K_S^0$

- $\circ \eta' \to \eta (\to \gamma \gamma) \pi^+ \pi^-$
- $\circ \eta' \to \rho(\to \pi^+\pi^-)\gamma$
- High BF, theoretically clean
 - \circ 829 ± 35 signal events

Run I $B \to K_S^0 K_S^0 K_S^0$

Belle II

 $Ldt = 362 \text{ fb}^{-1}$

 $40 \models B^0 \rightarrow K^0_S K^0_S K^0_S \text{ TD}$

60

50

30

20

10

0

- Challenge: no prompt tracks from B vertex
- Use $K_S^0 \to \pi^+ \pi^-$ extrapolated to interaction point • 158^{+14}_{-13} signal events

 $q_{f} = +1, B_{tag}^{0}$

 $q_{i} = -1, \overline{B}_{tag}^{0}$

6

8

- Vertex from $K_S^0 \to \pi^+\pi^-$ and IP constraint
- Expected to have small/none mixing ind. CPV

-2

-1 < S < -0.72

-0.29 < C < 0.14

0

∆t [ps]

_4

2

CKM ANGLES

CP violation in B mixing and decay, φ_s

Dominant SM "tree" contribution

Higher order "penguin" contributions from non-perturbative hadronic effects NP could be difficult to distinguish from penguins...

(2024) 051802, 2308.01468 10 Data LHCb Run 2, 6 fb⁻¹ Candidates / $(3.5 \text{ MeV}/c^2)$ $10^4 \text{ meV}/c^2$ Total fit - Signal Fit for bka. ---- Background subtraction $B^0 \rightarrow J/\psi K^+K^-$ **PRL 132** 5400 5500 5200 5300 $m(J/\psi K^+K^-)$ [MeV/c²]

CP-violating phase arising from interference between mixing and decay. • Precisely predicted by the SM: $\varphi_s^{SM} = -2\beta_s = -36.8^{+0.9}_{-0.6}$ mrad [CKMFitter]

- **Golden channel** exploited by LHCb, ATLAS, CMS: $B_s^0 \rightarrow J/\psi\phi$
- ° LHCb also measured many other channels
- Full Run 2 analysis of $B_s^0 \rightarrow J/\psi KK$ with KK pair in the vicinity of ϕ ;
- Angular analysis is needed to disentangle CP-even and CP-odd contributions, FT calibrated with $B^+ \rightarrow J/\psi K^+$ and $B_s^0 \rightarrow D_s^- \pi^+$, $\varepsilon^{\text{eff}}=4\%$

Run 2 φ_s result from LHCb

Using full Run 2 $B_s^0 \rightarrow J/\psi KK$

$$\begin{split} \varphi_s &= -0.039 \pm 0.022 \pm 0.006 \text{ rad} \\ |\lambda| &= 1.001 \pm 0.011 \pm 0.005 \\ \Gamma_s &- \Gamma_d &= 0.0056^{+0.0013}_{-0.0015} \pm 0.0014 \text{ ps}^{-1} \\ \Delta\Gamma_s &= 0.0845 \pm 0.0044 \pm 0.0024 \text{ ps}^{-1} \end{split}$$

[PRL 132 (2024) 051802, 2308.01468]

 φ_s consistent with Standard Model

 $φ_s$ 1.7 σ away from 0 consistent with no CPV in interference

 $|\lambda|$, which measures CPV in decay, ~ 1 consistent with no direct CPV

 $\Gamma_s - \Gamma_d$ consistent with HQE prediction [JHEP12 (2017) 068]

Run 2 φ_s result from LHCb

Mixing and CPV in charm: $D^0 \rightarrow K^+\pi^-$

25

- Charm is the only up-type quark that mixes and allows precise CPV measurements.
- Tagging $D^{0's}$ from $D^{*\pm} \to D^0 \pi^{\pm}$ via the π charge.
- To measure the CPV fit time-dependent WS/RS ratios

$$R_{K\pi}^+(t) \equiv \frac{\Gamma(D^0(t) \to K^+\pi^-)}{\Gamma(\overline{D}^0(t) \to K^+\pi^-)} \qquad R_{K\pi}^-(t) \equiv \frac{\Gamma(\overline{D}^0(t) \to K^-\pi^+)}{\Gamma(D^0(t) \to K^-\pi^+)}$$

Since oscillating parameters $x_{12}, y_{12} \ll 1$

$$R_{K\pi}^{\pm}(t) \approx R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) \frac{t}{\tau_{D^0}} + (c'_{K\pi} \pm \Delta c'_{K\pi}) \left(\frac{t}{\tau_{D^0}}\right)^2$$

CP-violating parameters

mixing parameters

- Mixing observables: first evidence for a significant quadratic term
- CPV observables: no evidence of CPV neither in decay, mixing nor interference
- \blacktriangleright 40% improvement in precision wrt the previous best result

Run 1+2

$$\begin{array}{ll} R_{K\pi} & (342.7 \pm 1.9) \times 10^{-5} \\ c_{K\pi} & (52.8 \pm 3.3) \times 10^{-4} \\ c_{K\pi}' & (12.0 \pm 3.5) \times 10^{-6} \\ A_{K\pi} & (-6.6 \pm 5.7) \times 10^{-3} \\ \Delta c_{K\pi} & (2.0 \pm 3.4) \times 10^{-4} \\ \Delta c_{K\pi}' & (-0.7 \pm 3.6) \times 10^{-6} \end{array}$$

CERN Seminar 26/03/2024

THE EXPERIMENTAL SCENARIO, THIS IS NOT THE END!

Belle II goal: ➤ L=6x10³⁵ cm⁻² s⁻¹ ➤ L_{int}~50 ab⁻¹

- Run II data taking just started in January 2024!
- Waiting to enter 10³⁵ cm⁻² s⁻¹ luminosity era.

Looking further into the

12 10

2 E

2010

[nst. luminosity [10³³ cm⁻²s⁻¹]

Run 1

LHCb in Run 5&6?

Target: ~300 fb⁻¹

future

- Pile-up: ~40
- 200 Tb/second data produced
- To keep the same performance in more difficult conditions, timing will be required in some sub-detectors

Run 2

LS2

2020

Run 3

LS3

Run 4

2030

Year

Run 5

Run 6

2040

luminosity [fb⁻¹]

100

- A lot of R&D on new technologies
- Sub-detector TDRs expected after Run 3

The HL-LHC provides an opportunity for the ultimate heavy-flavour experiment at the LHC!

[arXiv:1808.08865]

What could be achieved in the future?

NOW

Phase I: LHCb at 23 fb⁻¹ CMS/ATLAS at 300 fb⁻¹ Belle II at 50 ab⁻¹

Conclusions and remarks

• LHCb provides a unique laboratory to study CPV in the up-type quarks

See also arXiv:2405.06556 Search for TD-CPV in $D^0 \rightarrow \pi^+\pi^-\pi^0$

Interest in precision flavour measurements is stronger than ever
 If no direct evidence of NP pops out of the LHC,
 flavour physics can play a key role.

• Most of the results in the CKM sector in **good agreement with SM**, need to go to even **higher precision**: Run3 of LHCb and Run II of Belle II will permit to acquire a much larger dataset!

- ° Most of the measurements still limited by statistics.
- Excellent prospects for precision measurements in the Upgrade II phase of LHCb.

