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The Standard Model on the Lattice
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• Not a review of lattice computations!
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• Not a review of lattice computations!

What this talk is not:

• Why it is important to develop a nonperturbative (lattice) regulator for the Standard 
Model	

• Why that has been an impossibility for the 50 years since Wilson invented lattice field 
theory	

• The secret seems to lie in the sorts of topological materials condensed matter theorists 
have been discussing since discovery of the Integer Quantum Hall Effect	

• Possible implications for BSM physics?

What this talk is:
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Infinities are endemic to quantum field theories because we like to 
particle couplings are point-like.

The usual renormalization 
procedure was developed in 
perturbation theory to hide these 
infinities
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Ken Wilson reinvented 
quantum field theory 
because he wanted to 
formulate QFT on a 
computer, with no room for 
infinities

gluons quarks
quarks

Lattice QCD is now a standard 
computational tool… but does not 
extend to the whole Standard Model
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The Standard Model is a chiral gauge theory: one where a fermion mass term 
necessarily violates the gauge symmetry.

Fundamental tension between needing to impose a cutoff mass scale on the 
theory and not being able to without breaking gauge symmetry explicitly

• Pauli-Villars doesn’t work — breaks gauge symmetry	

• Dimensional regularization  not known to work past 2 loops: can’t analytically 
extend γ5 to non-integer dimensions	

• No lattice regulator (Nielsen -Ninomiya theorem) 1981

The Standard model is not currently a calculational scheme that can be 
extended to arbitrary precision!
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Why should we care?  Obviously an experimentally triumphant theory.

• Maybe we are missing something important?  

- Nonperturbative electroweak effects we are unaware of?

- Restrictions on parameters required to define the theory properly (e.g. 
ΘQCD=0? Extra particles required?  Only certain BSM extensions possible?)

• Perhaps there are known nonperturbative effects we would like to compute 
numerically, such as electroweak baryon violation in early universe?

• There is no foundation beneath our theory of the micro world.
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3

Domain Wall Fermions

3.1 Chirality, anomalies and fermion doubling

You have heard of the Nielsen-Ninomiya theorem: it states that a fermion action in
2k Euclidian spacetime dimensions

S =

Z ⇡/a

⇡/a

d2kp

(2⇡)4
 �pD̃(p) (p) (3.1)

cannot have the operator D̃ satisfy all four of the following conditions simultaneously:

1. D̃(p) is a periodic, analytic function of pµ;

2. D(p) / �µpµ for a|pµ| ⌧ 1;

3. D̃(p) invertible everywhere except pµ = 0;

4. {�, D̃(p)} = 0.

The first condition is required for locality of the Fourier transform of D̃(p) in
coordinate space. The next two state that we want a single flavor of conventional Dirac
fermion in the continuum limit. The last item is the statement of chiral symmetry. One
can try keeping that and eliminating one or more of the other conditions; for example,
the SLAC derivative took D̃(p) = �µpµ within the Brillouin zone (BZ), which violates
the first condition — if taken to be periodic, it is discontinuous at the edge of the BZ.
This causes problems — for example, the QED Ward identity states that the photon
vertex �µ is proportional to @D̃(p)/@pµ, which is infinite at the BZ boundary. Naive
fermions satisfy all the conditions except (3): there D̃(p) vanishes at the 24 corners
of the BZ, and so we have 24 flavors of Dirac fermions in the continuum. Staggered
fermions are somewhat less redundant, producing four flavors in the continuum for
each lattice field; Creutz fermions are the least redundant, giving rise to two copies
for each lattice field. The discussion in any even spacetime dimension is analogous.

This roadblock in developing a lattice theory with chirality is obviously impossible
to get around when you consider anomalies. Remember that anomalies do occur in
the continuum but that in a UV cuto↵ on the number of degrees of freedom, there
are no anomalies, and the exact symmetries of the regulated action are the exact
symmetries of the quantum theory. The only way a symmetry current can have a
nonzero divergence is if either the original action or the UV regulator explicitly violate
that symmetry. The implication for lattice fermions is that any symmetry that is exact
on the lattice will be exact in the continuum limit, while any symmetry anomalous in
the continuum limit must be broken explicitly on the lattice.

wanted: massless Dirac fermion with chiral symmetry

consider Euclidian fermion action on a lattice: 
<latexit sha1_base64="YuNN57ycW5VfsWH5A73jLsyZSjE="></latexit>

S =

Z
ddp

(2⇡)d
 ̄(�p) eD(p) (p)

☜ locality
☜ correct continuum limit
☜ no doublers
☜ exact chiral symmetry

Nielsen-Ninomiya theorem:  one can have at most 3 of these 4 desired attributes

Need #4 to project out a Weyl fermion from a massless Dirac fermion to simulate SM

Nielsen-Ninomiya theorem:

γ5
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NN theorem tells us that there should be mirror fermions: incompatible with chiral 
gauge theory

Attempts to get rid of mirror fermions on the lattice: 

1. Decouple them by breaking gauge  
symmetry and giving them a mass;  
restore gauge symmetry in continuum limit 
Golterman, Shamir

3. Eliminate mirror 
fermions by sacrificing  
locality (this talk)

2. Gap the system and give masses to the  
mirrors without breaking gauge symmetry 
(many-body effects) 
Eichten, Preskill 
X.G. Wen
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Edge states and topological phases

Chirality can occur in nature in surprising places

Louis Pasteur

Left- and right-
handed tartaric 
acid crystals
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Chiral edge states appear naturally 
in the Integer Quantum Hall Effect:

In physics: Dirac fermions with domain wall mass [Jackiw & 
Rebbi]:

Has solutions:

<latexit sha1_base64="oVv2BqXHJFfUs0pmUD+IaXfVzmU="></latexit>

�±(x5) = e⌥
R x5 m(s) ds

x5

m

With this domain wall mass profile, φ+ is 
normalizable    massless chiral edge state

RH

<latexit sha1_base64="G1IENzOcTSIaILszZAjJPrhysXU=">AAACSnicdZDPattAEMZXbtqk7j+nOfayxBRSCkZyYzmXQkgJ9OhAnAQsIUbrkb1kVxK7o1Aj/ER9lV56bPsOPeQWcukqcSAt6cDCx++bYXa+tFTSku//8FqP1h4/Wd942n72/MXLV53N1ye2qIzAsShUYc5SsKhkjmOSpPCsNAg6VXiann9q/NMLNFYW+TEtSow1zHKZSQHkUNI5jBRmNImsAjvHaR2VYEiCWvL3PJqB1pAM7lgycFDvfEkG7yIjZ3OKo5GV/CP3k07X7/n+MAxC7kR/GPh7jQj7ww8BD5zVVJetapR0fkfTQlQacxJus50Efklx3ewRCpftqLJYgjiHGU6czEGjjeubc5f8rSNTnhXGvZz4Db0/UYO2dqFT16mB5vZfr4EPeqsQHvImFWV7cS3zsiLMxe0nskpxKniTK59Kg4LUwgkQRro7uJiDAUEu/bYL6C4F/n9x0u8FYS882u3uH6yi2mBv2DbbYQEbsn32mY3YmAn2lX1nP9kv75t36V1517etLW81s8X+qtbaH6fAsmY=</latexit>⇥
/@ + �5@5 +m(x5)

⇤
 = 0

<latexit sha1_base64="nLNhPaymvhWcQsw/5ehfuwbpNuk=">AAACInicbVDLSsNAFJ3UV62vqEsRBotQNyXxkboRim5cVrAPaEKYTCbN0MmDmYlYQlf+ihu3+hfuxJXgN/gNTh+C2h64cO4598K9x0sZFdIwPrTCwuLS8kpxtbS2vrG5pW/vtESScUyaOGEJ73hIEEZj0pRUMtJJOUGRx0jb61+N/PYd4YIm8a0cpMSJUC+mAcVIKsnV9+2GoPAC2mlIXTuNKvfu2RG08aRz9bJRNcaAitSsE8uC5o/yQ8pgioarf9l+grOIxBIzJETXNFLp5IhLihkZluxMkBThPuqRrqIxiohw8vEbQ3ioFB8GCVcVSzhWf2/kKBJiEHlqMkIyFP+9kTjXE+qUkPjzvG4mg3Mnp3GaSRLjyRFBxqBM4Cgv6FNOsGQDRRDmVP0BcYg4wlKlWlIBzcQxS1rHVdOqWjen5frlNKoi2AMHoAJMUAN1cA0aoAkweABP4Bm8aI/aq/amvU9GC9p0Zxf8gfb5DSfgozk=</latexit>

 = �±(x5)�±
<latexit sha1_base64="O7QoNq5Zo11rgIOIzL6kScYQaiU=">AAACI3icbVDLSsNAFJ3UV62vqEtBBovgqiSi1Y1QdOOygn1AE8JkMmmGziRhZiKU0J2/4sat/oU7cePCX/AbnLYRtO2BGc4951649/gpo1JZ1qdRWlpeWV0rr1c2Nre2d8zdvbZMMoFJCycsEV0fScJoTFqKKka6qSCI+4x0/MHN2O88ECFpEt+rYUpcjvoxDSlGSkueeej0EefIO3dwRD0n5fAK6v+38syqVbMmgPPELkgVFGh65rcTJDjjJFaYISl7tpUqN0dCUczIqOJkkqQID1Cf9DSNESfSzSd3jOCxVgIYJkK/WMGJ+nciR1zKIfd1J0cqkrPeWFzoSb1KRIJFXi9T4aWb0zjNFInxdIkwY1AlcBwYDKggWLGhJggLqu+AOEICYaVjreiA7Nk45kn7tGbXa/W7s2rjuoiqDA7AETgBNrgADXALmqAFMHgEz+AFvBpPxpvxbnxMW0tGMbMP/sH4+gECMKRA</latexit>

�5�± = ±�±

Only 
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Why does the Dirac equation have a massless chiral 
edge state? Same reason as the appearance of edge 
states in Integer Quantum Hall Effect:  TOPOLOGY.

For the Dirac analog, the topology is in the behavior of fermion spin as one 
moves through a finite (regulated) momentum space.	

Chiral edge states naturally arise at the boundary between regions in different 
topological phases.

Thouless et al. explained the quantized resistivity of the Integer Quantum 
Hall Effect in terms of topology.  



D. B. Kaplan ~ PASCOS 2024~ Quy Nhon, Vietnam 7/9/24

Is there anything like quantized resistance in the Dirac fermion case that 
looks topological?



D. B. Kaplan ~ PASCOS 2024~ Quy Nhon, Vietnam 7/9/24

Is there anything like quantized resistance in the Dirac fermion case that 
looks topological?

Yes: if you want chiral fermions on a 4d edge, look at massive Dirac 
fermions in 5d.  	

Integrate them out of the theory in the presence of gauge fields:  obtain 
a Chern-Simons operator, εabcde Aa ∂b Ac ∂d Ae. 	

Its coefficient is quantized in integer units of e2/h (von Klitzing 
conductivity!) and independent under continuous deformations of 
parameters of the theory.
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Is there anything like quantized resistance in the Dirac fermion case that 
looks topological?

Yes: if you want chiral fermions on a 4d edge, look at massive Dirac 
fermions in 5d.  	

Integrate them out of the theory in the presence of gauge fields:  obtain 
a Chern-Simons operator, εabcde Aa ∂b Ac ∂d Ae. 	

Its coefficient is quantized in integer units of e2/h (von Klitzing 
conductivity!) and independent under continuous deformations of 
parameters of the theory.

How does topology result from  a 1-loop Feynman diagram??



D. B. Kaplan ~ PASCOS 2024~ Quy Nhon, Vietnam 7/9/24

Using Ward identity, Chern-Simons coefficient in d= 2n+1 is proportional to

where S(p) is the fermion propagator. 

<latexit sha1_base64="poPSGW+XKjWDJlnqbAniXMn2Uv0="></latexit>

✏µ1...µd

Z
ddp

(2⇡)d
Tr S(p)

@S�1(p)

@pµ1

· · ·S(p)@S
�1(p)

@pµd

Volume 301, number 2,3 PHYSICS LETTERS B 4 March 1993 

( d -  1 )-dimensional anomaly for the single chiral fermion zeromode that is bound to the domam wall "~. This 
effect is a manifestation of the descent relations between the anomalies in odd and even dimensions [ 8 ]. 

In this letter, we show how to perform the Cal lan-Harvey (CH)  analysis for the lattice theory m euclidean 
space, where the zeromode spectrum is more complicated than m the cont inuum. It is far from obvious that the 
lamce theory should follow the CH cont inuum analysis; after all, the coefficient of the Chern-Slmons  action 
gets O( 1 ) contr ibut ions from arbitrarily heavy fermlon modes, and the heavy spectrum on the lattice looks 
nothing like m the cont inuum. In fact, we know the induced Chern-S imons  operator must have a coefficient 
very different from the cont inuum result. While ref. [3 ] analysed the spectrum of the theory for a Wilson cou- 
pling r =  1 and a domain  wall height 0 < mo< 2 and found a single chiral mode, a recent paper by Jansen and 
Schmaltz [ 9 ] analyses the same model for general parameters and shows that the spectrum bound to the domain 
wall changes discontinuously with varying mo/r ~2. They find that for 2k<  I mo/rl < 2k+2 ,  where k is an integer 
in the range O<~k<~d- 1, there are (dZ~) choral modes bound to the domain wall with chirality ( - 1 )k×s ign(mo);  
there are no choral fermions for I mo/rl > 2d. This is qmte different than the cont inuum theory, for which there 
is a single chiral mode for any mo¢: 0. If the induced Chern-Simons  action on the lattice is to correctly account 
for the anomalous divergences of the chlral fermton currents on the domain wall, then evidently its coefficient 
must also depend discontinuously on mo/r in a very particular way. We show in this letter that that does indeed 
happen ~3. 

The abelian Chern-S imons  action in d =  2n + l contmuous euchdean dimensions is given by 

f d 2n+ Ix Aa, 0a2Aa3 0a,,Aa2,+t • ( 1 ) F(a) CS ~ O t l  Ot2n+i "" 

When a massive fermion is integrated out of the theory it generates a c o n t n b u t m n  to the effective action of the 
form S~fr=c, Fcs; absorbing the gauge coupling into the gauge field, Fcs is seen to be o fd tmens ion  d, and so the 
coefficient c, will be dimensionless and the operator will not decouple for large fermion mass. The coefficient c, 
can be computed by calculating the relevant portmn of the graph in fig. 1. This is true on the lattice as well in 
the weak field, long wavelength limit for the gauge fields. Denoting the fermion propagator and photon vertex 
as S(p )  and iAu(p, p ' )  respectively, the graph of fig. 1 yields a value for c, which may be expressed as 

• 

l ~ a l #  I ct,,#notn+ j ~ 
c . =  (nT-i) ~ ) !  " 

" d2n+ Ip ] 
× (2rt)2,+ , T r [ S ( p ) A ~ , ( p , p - q t ) S ( p - q ~ )  ...A . . . .  (P+q"+~'P) q,=o" (2) 

BZ 

4~ It should be pointed out that if the magmtude of the Chern-Slmons current is regular dependent, the graph needs to be regulated. A 
regulator cannot change the divergence of the current, however. We thank M. Lfischer for this comment. 

42 All dlmenslonful parameters are gdven m lattice units. By a domam wall of height mo we mean a spatially dependent mass term 
re(s) --. +mo as s-, + oo, where s is the coordinate transverse to the domain wall. 

43 The dependence of the reduced Chern-Slmons actmn on the Wdson couphng • has been previously discussed for three d~mensmns m 
the continuum hmlt (spatmlly constant rn--,0) in ref. [ 10] and for Iml < 1 m ref. [ I 1 ] Some of the techmques used m this letter are 
samdar to those found m the latter work. 

---> \ / <-- 
ql ~ qn+1 

Fig. 1. The Feynman diagram m 2n+ I dtmensmns conmbutmg 
to the induced Chern-Simons acuon for abehan gauge fields, 
Y 7=+1 ~ q, = 0. Graphs with mulUple photon vertmes pecuhar to the 
latuce do not conmbute, as each A field from such a vertex has 
the same Lorentz index and the contnbutlon vanishes by the an- 
usymmetry of the ~ tensor 

220 
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where S(p) is the fermion propagator. 
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Using Ward identity, Chern-Simons coefficient in d= 2n+1 is proportional to

where S(p) is the fermion propagator. 
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( d -  1 )-dimensional anomaly for the single chiral fermion zeromode that is bound to the domam wall "~. This 
effect is a manifestation of the descent relations between the anomalies in odd and even dimensions [ 8 ]. 

In this letter, we show how to perform the Cal lan-Harvey (CH)  analysis for the lattice theory m euclidean 
space, where the zeromode spectrum is more complicated than m the cont inuum. It is far from obvious that the 
lamce theory should follow the CH cont inuum analysis; after all, the coefficient of the Chern-Slmons  action 
gets O( 1 ) contr ibut ions from arbitrarily heavy fermlon modes, and the heavy spectrum on the lattice looks 
nothing like m the cont inuum. In fact, we know the induced Chern-S imons  operator must have a coefficient 
very different from the cont inuum result. While ref. [3 ] analysed the spectrum of the theory for a Wilson cou- 
pling r =  1 and a domain  wall height 0 < mo< 2 and found a single chiral mode, a recent paper by Jansen and 
Schmaltz [ 9 ] analyses the same model for general parameters and shows that the spectrum bound to the domain 
wall changes discontinuously with varying mo/r ~2. They find that for 2k<  I mo/rl < 2k+2 ,  where k is an integer 
in the range O<~k<~d- 1, there are (dZ~) choral modes bound to the domain wall with chirality ( - 1 )k×s ign(mo);  
there are no choral fermions for I mo/rl > 2d. This is qmte different than the cont inuum theory, for which there 
is a single chiral mode for any mo¢: 0. If the induced Chern-Simons  action on the lattice is to correctly account 
for the anomalous divergences of the chlral fermton currents on the domain wall, then evidently its coefficient 
must also depend discontinuously on mo/r in a very particular way. We show in this letter that that does indeed 
happen ~3. 

The abelian Chern-S imons  action in d =  2n + l contmuous euchdean dimensions is given by 

f d 2n+ Ix Aa, 0a2Aa3 0a,,Aa2,+t • ( 1 ) F(a) CS ~ O t l  Ot2n+i "" 

When a massive fermion is integrated out of the theory it generates a c o n t n b u t m n  to the effective action of the 
form S~fr=c, Fcs; absorbing the gauge coupling into the gauge field, Fcs is seen to be o fd tmens ion  d, and so the 
coefficient c, will be dimensionless and the operator will not decouple for large fermion mass. The coefficient c, 
can be computed by calculating the relevant portmn of the graph in fig. 1. This is true on the lattice as well in 
the weak field, long wavelength limit for the gauge fields. Denoting the fermion propagator and photon vertex 
as S(p )  and iAu(p, p ' )  respectively, the graph of fig. 1 yields a value for c, which may be expressed as 
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4~ It should be pointed out that if the magmtude of the Chern-Slmons current is regular dependent, the graph needs to be regulated. A 
regulator cannot change the divergence of the current, however. We thank M. Lfischer for this comment. 

42 All dlmenslonful parameters are gdven m lattice units. By a domam wall of height mo we mean a spatially dependent mass term 
re(s) --. +mo as s-, + oo, where s is the coordinate transverse to the domain wall. 

43 The dependence of the reduced Chern-Slmons actmn on the Wdson couphng • has been previously discussed for three d~mensmns m 
the continuum hmlt (spatmlly constant rn--,0) in ref. [ 10] and for Iml < 1 m ref. [ I 1 ] Some of the techmques used m this letter are 
samdar to those found m the latter work. 
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to the induced Chern-Simons acuon for abehan gauge fields, 
Y 7=+1 ~ q, = 0. Graphs with mulUple photon vertmes pecuhar to the 
latuce do not conmbute, as each A field from such a vertex has 
the same Lorentz index and the contnbutlon vanishes by the an- 
usymmetry of the ~ tensor 
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Feynman diagram computes the winding number of S(p) as a map from 
momentum space to Dirac spinor space… much more general than just for free 
Dirac fermion — also true for fermions on a lattice.
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Massless chiral fermions will appear at interface between regions with 
different Chern-Simons coefficients. 

Using Ward identity, Chern-Simons coefficient in d= 2n+1 is proportional to

where S(p) is the fermion propagator. 
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effect is a manifestation of the descent relations between the anomalies in odd and even dimensions [ 8 ]. 

In this letter, we show how to perform the Cal lan-Harvey (CH)  analysis for the lattice theory m euclidean 
space, where the zeromode spectrum is more complicated than m the cont inuum. It is far from obvious that the 
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nothing like m the cont inuum. In fact, we know the induced Chern-S imons  operator must have a coefficient 
very different from the cont inuum result. While ref. [3 ] analysed the spectrum of the theory for a Wilson cou- 
pling r =  1 and a domain  wall height 0 < mo< 2 and found a single chiral mode, a recent paper by Jansen and 
Schmaltz [ 9 ] analyses the same model for general parameters and shows that the spectrum bound to the domain 
wall changes discontinuously with varying mo/r ~2. They find that for 2k<  I mo/rl < 2k+2 ,  where k is an integer 
in the range O<~k<~d- 1, there are (dZ~) choral modes bound to the domain wall with chirality ( - 1 )k×s ign(mo);  
there are no choral fermions for I mo/rl > 2d. This is qmte different than the cont inuum theory, for which there 
is a single chiral mode for any mo¢: 0. If the induced Chern-Simons  action on the lattice is to correctly account 
for the anomalous divergences of the chlral fermton currents on the domain wall, then evidently its coefficient 
must also depend discontinuously on mo/r in a very particular way. We show in this letter that that does indeed 
happen ~3. 
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coefficient c, will be dimensionless and the operator will not decouple for large fermion mass. The coefficient c, 
can be computed by calculating the relevant portmn of the graph in fig. 1. This is true on the lattice as well in 
the weak field, long wavelength limit for the gauge fields. Denoting the fermion propagator and photon vertex 
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4~ It should be pointed out that if the magmtude of the Chern-Slmons current is regular dependent, the graph needs to be regulated. A 
regulator cannot change the divergence of the current, however. We thank M. Lfischer for this comment. 

42 All dlmenslonful parameters are gdven m lattice units. By a domam wall of height mo we mean a spatially dependent mass term 
re(s) --. +mo as s-, + oo, where s is the coordinate transverse to the domain wall. 

43 The dependence of the reduced Chern-Slmons actmn on the Wdson couphng • has been previously discussed for three d~mensmns m 
the continuum hmlt (spatmlly constant rn--,0) in ref. [ 10] and for Iml < 1 m ref. [ I 1 ] Some of the techmques used m this letter are 
samdar to those found m the latter work. 
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Feynman diagram computes the winding number of S(p) as a map from 
momentum space to Dirac spinor space… much more general than just for free 
Dirac fermion — also true for fermions on a lattice.
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Usual tuning for  
Wilson fermions (4d)

Aoki phase

Phase diagram for lattice QCD with Wilson fermions in 5d Euclidian spacetime

S Aoki, Prog Th Phys 122 (1996) 179

m/r



D. B. Kaplan ~ PASCOS 2024~ Quy Nhon, Vietnam 7/9/24

Usual tuning for  
Wilson fermions (4d)

Aoki phase

Phase diagram for lattice QCD with Wilson fermions in 5d Euclidian spacetime

S Aoki, Prog Th Phys 122 (1996) 179

Topological phases —  
where to sit for chiral domain wall fermions

m/r
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M. Golterman, K. Jansen, DBK, Phys. Lett. B 301 (1993) 219

DBK, Phys. Lett. B 288 (1992) 342

The phenomenon of massless edge states at topological phase 
boundaries exists for lattice fermions.

A 5d strip of lattice with 4d boundaries is now often used to simulate 
lattice QCD with very good chiral symmetry, useful for many applications.
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periodic BC

periodic BC

open BC (ψ=0) (Y. Shamir, 1993)

RH Weyl

LH Weyl

Obtain almost massless RH & LH Weyl 

fermions… mass  
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The spectrum for Wilson fermions on the 5d strip

massive bulk 
states

massless chiral 
edge states
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Wilson fermions on the 5d strip are:

• Useful for performing lattice QCD computations	

•Useless for simulating a chiral gauge theory	

- vector-like theory (LH and RH fermions have same gauge charges)	

-chiral symmetry is broken by a tiny amount (exponentially small in size of 5th 
dimension) — not exact as needed for chiral gauge theory



D. B. Kaplan ~ PASCOS 2024~ Quy Nhon, Vietnam 7/9/24

Wilson fermions on the 5d strip are:

• Useful for performing lattice QCD computations	

•Useless for simulating a chiral gauge theory	

- vector-like theory (LH and RH fermions have same gauge charges)	

-chiral symmetry is broken by a tiny amount (exponentially small in size of 5th 
dimension) — not exact as needed for chiral gauge theory

But what happens on lattice with a single boundary between topological phases?
DB Kaplan: Phys. Rev. Lett. 132 (2024) 141603,  arXiv:2312.01494	
DB Kaplan, S. Sen:  Phys. Rev. Lett. 132 (2024) 141604,  arXiv:2312.04012
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Consider Dirac fermion an a disk:

m
R
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Shouldn’t this have a single Weyl fermion edge state?  	

Which must be exactly massless?	

Which can be realized with Wilson fermions on a lattice?

Edge states on manifold with a single boundary:
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m(r) =

(
m r < R
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Work on a lattice disc with 
open BC 	

Weyl edge state? 	
Look at 1+1 dispersion relation

R = 34 lattice sites

If you want E vs p for the edge 
state, plot E vs J/R
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Nielsen-Ninomiya would have you believe this is not possible for sensible system
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Last (important!) piece of the puzzle:  how to gauge?

d+1 theory with Nf flavors has exact U(Nf) global symmetry…can easily gauge a 
subgroup in the continuum or the lattice. 

…but want a d-dimensional gauge theory, not d+1…unlike CM systems

Recipe: Define bulk gauge fields Bµ to be functionals of the boundary values Aµ ; 
integrate only over the Aµ in the path integral

4

which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For example, Bµ can be solution to Euclidian YM eq. subject to this BC.
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with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For example, Bµ can be solution to Euclidian YM eq. subject to this BC.



D. B. Kaplan ~ PASCOS 2024~ Quy Nhon, Vietnam 7/9/24

4

which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For example, Bµ can be solution to Euclidian YM eq. subject to this BC.

In general this will give a terribly nonlocal theory:  	

Bulk fermion modes generate a Chern Simons operator in the bulk  which is a function of Bµ 
and therefore a nonlocal functional of the edge gauge fields Aµ	



D. B. Kaplan ~ PASCOS 2024~ Quy Nhon, Vietnam 7/9/24

4

which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For example, Bµ can be solution to Euclidian YM eq. subject to this BC.

In general this will give a terribly nonlocal theory:  	

Bulk fermion modes generate a Chern Simons operator in the bulk  which is a function of Bµ 
and therefore a nonlocal functional of the edge gauge fields Aµ	

…but this is the only marginal operator generated — and its coefficient vanishes if edge chiral gauge 
theory is anomaly-free
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which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For example, Bµ can be solution to Euclidian YM eq. subject to this BC.

In general this will give a terribly nonlocal theory:  	

Bulk fermion modes generate a Chern Simons operator in the bulk  which is a function of Bµ 
and therefore a nonlocal functional of the edge gauge fields Aµ	

This theory will be a local d-dimensional theory in the infrared if the 
chiral gauge theory is anomaly-free (like the SM!)

…but this is the only marginal operator generated — and its coefficient vanishes if edge chiral gauge 
theory is anomaly-free
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The whole story?  No.	

Golterman & Shamir arXiv:1404.16372 (2024):  U(1)A behaves wrong: ’t Hooft operators from 
instantons involve spurious fermion zeromodes in 5d bulk.	

Possible solutions might exist… but only for the case θQCD=0?  Could this be a prerequisite for 
defining the SM nonperturbatively?  Too early to say, work in progress.	
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The whole story?  No.	

Golterman & Shamir arXiv:1404.16372 (2024):  U(1)A behaves wrong: ’t Hooft operators from 
instantons involve spurious fermion zeromodes in 5d bulk.	

Possible solutions might exist… but only for the case θQCD=0?  Could this be a prerequisite for 
defining the SM nonperturbatively?  Too early to say, work in progress.	

The first task is to reproduce QCD effects (or 1+1 dimension analogs) with a setup like this.

Are there other unexpected predictions, nonperturbative effects?	
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Like condensed matter system, topological “matter” is ubiquitous in relativistic 
quantum field theories with a gap, and such materials support chiral edge states

These topological phases can be exploited on the lattice for simulating Weyl 
fermions, defying the Nielsen-Ninomiya theorem by violating some of its 
assumptions.

It look like it may be possible to gauge such theories as local 4d theories if the gauge 
anomalies cancel (as they do in the SM).

Hopefully before long a simulation of nonperturbative effects in the SM might be 
possible.

Summary
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Question for PASCOS 2024:

…but if it turns out to be the only feasible way to define the SM,  should we 
take the hint that this might be how the real world works? 	

Can a cosmology for such a world make sense (remember — the gauge 
fields are weird)?

A fifth dimension was introduced as a “trick” for nonperturbatively defining the 
Standard Model on a lattice…

…or is there perhaps a more natural formulation to confine the propagating 
gauge fields to the boundary? 
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Chiral gauge theory as a boundary theory, without requiring new dynamics
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Does it work?  Too early to tell… 	
….but the Nielsen-Ninomiya theorem is no longer the obstacle.

Conclusions

Construction “understands” anomalies:  local 4D theory emerges only if gauge 
anomalies cancel (discrete and perturbative)
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An excitingly simple picture is emerging:  	
Chiral gauge theory as a boundary theory, without requiring new dynamics

Does it work?  Too early to tell… 	
….but the Nielsen-Ninomiya theorem is no longer the obstacle.

➤ Do ``non-universal’’ features of a regulator for the Standard Model tell 
us about constraints on the world?	

• Constraints on θQCD?	

• The world as a 4D boundary of a 5D universe?

Conclusions

Construction “understands” anomalies:  local 4D theory emerges only if gauge 
anomalies cancel (discrete and perturbative)


