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The	Standard	Model	on	the	La/ce
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• Not	a	review	of	la.ce	computa3ons!

What	this	talk	is	not:
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• Not	a	review	of	la.ce	computa3ons!

What	this	talk	is	not:

• Why	it	is	important	to	develop	a	nonperturba3ve	(la.ce)	regulator	for	the	Standard	
Model	

• Why	that	has	been	an	impossibility	for	the	50	years	since	Wilson	invented	la.ce	field	
theory	

• The	secret	seems	to	lie	in	the	sorts	of	topological	materials	condensed	maGer	theorists	
have	been	discussing	since	discovery	of	the	Integer	Quantum	Hall	Effect	

• Possible	implica3ons	for	BSM	physics?

What	this	talk	is:
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Infini3es	are	endemic	to	quantum	field	theories	because	we	like	to	
par3cle	couplings	are	point-like.

The	usual	renormaliza3on	
procedure	was	developed	in	
perturba3on	theory	to	hide	these	
infini3es
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Ken	Wilson	reinvented	
quantum	field	theory	
because	he	wanted	to	
formulate	QFT	on	a	
computer,	with	no	room	for	
infini3es

gluons quarks
quarks

La.ce	QCD	is	now	a	standard	
computa3onal	tool…	but	does	not	
extend	to	the	whole	Standard	Model
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The	Standard	Model	is	a	chiral	gauge	theory:	one	where	a	fermion	mass	term	
necessarily	violates	the	gauge	symmetry.
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The	Standard	Model	is	a	chiral	gauge	theory:	one	where	a	fermion	mass	term	
necessarily	violates	the	gauge	symmetry.

Fundamental	tension	between	needing	to	impose	a	cutoff	mass	scale	on	the	
theory	and	not	being	able	to	without	breaking	gauge	symmetry	explicitly
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The	Standard	Model	is	a	chiral	gauge	theory:	one	where	a	fermion	mass	term	
necessarily	violates	the	gauge	symmetry.

Fundamental	tension	between	needing	to	impose	a	cutoff	mass	scale	on	the	
theory	and	not	being	able	to	without	breaking	gauge	symmetry	explicitly

• Pauli-Villars	doesn’t	work	—	breaks	gauge	symmetry	

• Dimensional	regulariza3on		not	known	to	work	past	2	loops:	can’t	analy3cally	
extend	γ5	to	non-integer	dimensions	

• No	la.ce	regulator	(Nielsen	-Ninomiya	theorem)	1981
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The	Standard	Model	is	a	chiral	gauge	theory:	one	where	a	fermion	mass	term	
necessarily	violates	the	gauge	symmetry.

Fundamental	tension	between	needing	to	impose	a	cutoff	mass	scale	on	the	
theory	and	not	being	able	to	without	breaking	gauge	symmetry	explicitly

• Pauli-Villars	doesn’t	work	—	breaks	gauge	symmetry	

• Dimensional	regulariza3on		not	known	to	work	past	2	loops:	can’t	analy3cally	
extend	γ5	to	non-integer	dimensions	

• No	la.ce	regulator	(Nielsen	-Ninomiya	theorem)	1981

The	Standard	model	is	not	currently	a	calcula3onal	scheme	that	can	be	
extended	to	arbitrary	precision!
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Why	should	we	care?		Obviously	an	experimentally	triumphant	theory.
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-	Nonperturba3ve	electroweak	effects	we	are	unaware	of?
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Why	should	we	care?		Obviously	an	experimentally	triumphant	theory.

• Maybe	we	are	missing	something	important?		

-	Nonperturba3ve	electroweak	effects	we	are	unaware	of?

-	Restric3ons	on	parameters	required	to	define	the	theory	properly	(e.g.	
ΘQCD=0?	Extra	par3cles	required?		Only	certain	BSM	extensions	possible?)
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Why	should	we	care?		Obviously	an	experimentally	triumphant	theory.

• Maybe	we	are	missing	something	important?		

-	Nonperturba3ve	electroweak	effects	we	are	unaware	of?

-	Restric3ons	on	parameters	required	to	define	the	theory	properly	(e.g.	
ΘQCD=0?	Extra	par3cles	required?		Only	certain	BSM	extensions	possible?)

• Perhaps	there	are	known	nonperturba3ve	effects	we	would	like	to	compute	
numerically,	such	as	electroweak	baryon	viola3on	in	early	universe?
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Why	should	we	care?		Obviously	an	experimentally	triumphant	theory.

• Maybe	we	are	missing	something	important?		

-	Nonperturba3ve	electroweak	effects	we	are	unaware	of?

-	Restric3ons	on	parameters	required	to	define	the	theory	properly	(e.g.	
ΘQCD=0?	Extra	par3cles	required?		Only	certain	BSM	extensions	possible?)

• Perhaps	there	are	known	nonperturba3ve	effects	we	would	like	to	compute	
numerically,	such	as	electroweak	baryon	viola3on	in	early	universe?

• There	is	no	founda3on	beneath	our	theory	of	the	micro	world.
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3

Domain Wall Fermions

3.1 Chirality, anomalies and fermion doubling

You have heard of the Nielsen-Ninomiya theorem: it states that a fermion action in
2k Euclidian spacetime dimensions

S =

Z ⇡/a

⇡/a

d2kp

(2⇡)4
 �pD̃(p) (p) (3.1)

cannot have the operator D̃ satisfy all four of the following conditions simultaneously:

1. D̃(p) is a periodic, analytic function of pµ;

2. D(p) / �µpµ for a|pµ| ⌧ 1;

3. D̃(p) invertible everywhere except pµ = 0;

4. {�, D̃(p)} = 0.

The first condition is required for locality of the Fourier transform of D̃(p) in
coordinate space. The next two state that we want a single flavor of conventional Dirac
fermion in the continuum limit. The last item is the statement of chiral symmetry. One
can try keeping that and eliminating one or more of the other conditions; for example,
the SLAC derivative took D̃(p) = �µpµ within the Brillouin zone (BZ), which violates
the first condition — if taken to be periodic, it is discontinuous at the edge of the BZ.
This causes problems — for example, the QED Ward identity states that the photon
vertex �µ is proportional to @D̃(p)/@pµ, which is infinite at the BZ boundary. Naive
fermions satisfy all the conditions except (3): there D̃(p) vanishes at the 24 corners
of the BZ, and so we have 24 flavors of Dirac fermions in the continuum. Staggered
fermions are somewhat less redundant, producing four flavors in the continuum for
each lattice field; Creutz fermions are the least redundant, giving rise to two copies
for each lattice field. The discussion in any even spacetime dimension is analogous.

This roadblock in developing a lattice theory with chirality is obviously impossible
to get around when you consider anomalies. Remember that anomalies do occur in
the continuum but that in a UV cuto↵ on the number of degrees of freedom, there
are no anomalies, and the exact symmetries of the regulated action are the exact
symmetries of the quantum theory. The only way a symmetry current can have a
nonzero divergence is if either the original action or the UV regulator explicitly violate
that symmetry. The implication for lattice fermions is that any symmetry that is exact
on the lattice will be exact in the continuum limit, while any symmetry anomalous in
the continuum limit must be broken explicitly on the lattice.

wanted:	massless	Dirac	fermion	with	chiral	symmetry

consider	Euclidian	fermion	ac3on	on	a	la.ce:	
<latexit sha1_base64="YuNN57ycW5VfsWH5A73jLsyZSjE="></latexit>

S =

Z
ddp

(2⇡)d
 ̄(�p) eD(p) (p)

☜	locality
☜	correct	con3nuum	limit
☜	no	doublers
☜	exact	chiral	symmetry

Nielsen-Ninomiya	theorem:		one	can	have	at	most	3	of	these	4	desired	aGributes

Need	#4	to	project	out	a	Weyl	fermion	from	a	massless	Dirac	fermion	to	simulate	SM

Nielsen-Ninomiya	theorem:

γ5
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NN	theorem	tells	us	that	there	should	be	mirror	fermions:	incompa3ble	with	chiral	
gauge	theory

AGempts	to	get	rid	of	mirror	fermions	on	the	la.ce:	
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gauge	theory

AGempts	to	get	rid	of	mirror	fermions	on	the	la.ce:	

1. Decouple them by breaking gauge  
symmetry and giving them a mass;  
restore gauge symmetry in continuum limit 
Golterman, Shamir
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1. Decouple them by breaking gauge  
symmetry and giving them a mass;  
restore gauge symmetry in continuum limit 
Golterman, Shamir

2. Gap the system and give masses to the  
mirrors without breaking gauge symmetry 
(many-body effects) 
Eichten, Preskill 
X.G. Wen



D. B. Kaplan ~ PASCOS 2024~ Quy Nhon, Vietnam 7/9/24

NN	theorem	tells	us	that	there	should	be	mirror	fermions:	incompa3ble	with	chiral	
gauge	theory

AGempts	to	get	rid	of	mirror	fermions	on	the	la.ce:	

1. Decouple them by breaking gauge  
symmetry and giving them a mass;  
restore gauge symmetry in continuum limit 
Golterman, Shamir

3. Eliminate mirror 
fermions by sacrificing  
locality (this talk)

2. Gap the system and give masses to the  
mirrors without breaking gauge symmetry 
(many-body effects) 
Eichten, Preskill 
X.G. Wen
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Edge	states	and	topological	phases

Chirality	can	occur	in	nature	in	surprising	places

Louis Pasteur

Left- and right-
handed tartaric 
acid crystals
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Chiral	edge	states	appear	naturally	
in	the	Integer	Quantum	Hall	Effect:

In	physics:
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Chiral	edge	states	appear	naturally	
in	the	Integer	Quantum	Hall	Effect:

In	physics: Dirac	fermions	with	domain	wall	mass	[Jackiw	&	
Rebbi]:

Has	solu3ons:

<latexit sha1_base64="oVv2BqXHJFfUs0pmUD+IaXfVzmU="></latexit>

�±(x5) = e⌥
R x5 m(s) ds

x5

m

With	this	domain	wall	mass	profile,	φ+	is	
normalizable		  	massless	chiral	edge	state

RH

<latexit sha1_base64="G1IENzOcTSIaILszZAjJPrhysXU=">AAACSnicdZDPattAEMZXbtqk7j+nOfayxBRSCkZyYzmXQkgJ9OhAnAQsIUbrkb1kVxK7o1Aj/ER9lV56bPsOPeQWcukqcSAt6cDCx++bYXa+tFTSku//8FqP1h4/Wd942n72/MXLV53N1ye2qIzAsShUYc5SsKhkjmOSpPCsNAg6VXiann9q/NMLNFYW+TEtSow1zHKZSQHkUNI5jBRmNImsAjvHaR2VYEiCWvL3PJqB1pAM7lgycFDvfEkG7yIjZ3OKo5GV/CP3k07X7/n+MAxC7kR/GPh7jQj7ww8BD5zVVJetapR0fkfTQlQacxJus50Efklx3ewRCpftqLJYgjiHGU6czEGjjeubc5f8rSNTnhXGvZz4Db0/UYO2dqFT16mB5vZfr4EPeqsQHvImFWV7cS3zsiLMxe0nskpxKniTK59Kg4LUwgkQRro7uJiDAUEu/bYL6C4F/n9x0u8FYS882u3uH6yi2mBv2DbbYQEbsn32mY3YmAn2lX1nP9kv75t36V1517etLW81s8X+qtbaH6fAsmY=</latexit>⇥
/@ + �5@5 +m(x5)

⇤
 = 0

<latexit sha1_base64="nLNhPaymvhWcQsw/5ehfuwbpNuk=">AAACInicbVDLSsNAFJ3UV62vqEsRBotQNyXxkboRim5cVrAPaEKYTCbN0MmDmYlYQlf+ihu3+hfuxJXgN/gNTh+C2h64cO4598K9x0sZFdIwPrTCwuLS8kpxtbS2vrG5pW/vtESScUyaOGEJ73hIEEZj0pRUMtJJOUGRx0jb61+N/PYd4YIm8a0cpMSJUC+mAcVIKsnV9+2GoPAC2mlIXTuNKvfu2RG08aRz9bJRNcaAitSsE8uC5o/yQ8pgioarf9l+grOIxBIzJETXNFLp5IhLihkZluxMkBThPuqRrqIxiohw8vEbQ3ioFB8GCVcVSzhWf2/kKBJiEHlqMkIyFP+9kTjXE+qUkPjzvG4mg3Mnp3GaSRLjyRFBxqBM4Cgv6FNOsGQDRRDmVP0BcYg4wlKlWlIBzcQxS1rHVdOqWjen5frlNKoi2AMHoAJMUAN1cA0aoAkweABP4Bm8aI/aq/amvU9GC9p0Zxf8gfb5DSfgozk=</latexit>

 = �±(x5)�±
<latexit sha1_base64="O7QoNq5Zo11rgIOIzL6kScYQaiU=">AAACI3icbVDLSsNAFJ3UV62vqEtBBovgqiSi1Y1QdOOygn1AE8JkMmmGziRhZiKU0J2/4sat/oU7cePCX/AbnLYRtO2BGc4951649/gpo1JZ1qdRWlpeWV0rr1c2Nre2d8zdvbZMMoFJCycsEV0fScJoTFqKKka6qSCI+4x0/MHN2O88ECFpEt+rYUpcjvoxDSlGSkueeej0EefIO3dwRD0n5fAK6v+38syqVbMmgPPELkgVFGh65rcTJDjjJFaYISl7tpUqN0dCUczIqOJkkqQID1Cf9DSNESfSzSd3jOCxVgIYJkK/WMGJ+nciR1zKIfd1J0cqkrPeWFzoSb1KRIJFXi9T4aWb0zjNFInxdIkwY1AlcBwYDKggWLGhJggLqu+AOEICYaVjreiA7Nk45kn7tGbXa/W7s2rjuoiqDA7AETgBNrgADXALmqAFMHgEz+AFvBpPxpvxbnxMW0tGMbMP/sH4+gECMKRA</latexit>

�5�± = ±�±

Only	
one	s

olu3o
n	

is	nor
malizab

le
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Why	does	the	Dirac	equa3on	have	a	massless	chiral	
edge	state?	Same	reason	as	the	appearance	of	edge	
states	in	Integer	Quantum	Hall	Effect:		TOPOLOGY.
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Why	does	the	Dirac	equa3on	have	a	massless	chiral	
edge	state?	Same	reason	as	the	appearance	of	edge	
states	in	Integer	Quantum	Hall	Effect:		TOPOLOGY.

For	the	Dirac	analog,	the	topology	is	in	the	behavior	of	fermion	spin	as	one	
moves	through	a	finite	(regulated)	momentum	space.	

Chiral	edge	states	naturally	arise	at	the	boundary	between	regions	in	different	
topological	phases.

Thouless	et	al.	explained	the	quan3zed	resis3vity	of	the	Integer	Quantum	
Hall	Effect	in	terms	of	topology.		
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Is	there	anything	like	quan3zed	resistance	in	the	Dirac	fermion	case	that	
looks	topological?
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Is	there	anything	like	quan3zed	resistance	in	the	Dirac	fermion	case	that	
looks	topological?

Yes:	if	you	want	chiral	fermions	on	a	4d	edge,	look	at	massive	Dirac	
fermions	in	5d.			

Integrate	them	out	of	the	theory	in	the	presence	of	gauge	fields:		obtain	
a	Chern-Simons	operator,	εabcde	Aa	∂b	Ac	∂d	Ae.		

Its	coefficient	is	quan3zed	in	integer	units	of	e2/h	(von	Klitzing	
conduc3vity!)	and	independent	under	con3nuous	deforma3ons	of	
parameters	of	the	theory.
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Is	there	anything	like	quan3zed	resistance	in	the	Dirac	fermion	case	that	
looks	topological?

Yes:	if	you	want	chiral	fermions	on	a	4d	edge,	look	at	massive	Dirac	
fermions	in	5d.			

Integrate	them	out	of	the	theory	in	the	presence	of	gauge	fields:		obtain	
a	Chern-Simons	operator,	εabcde	Aa	∂b	Ac	∂d	Ae.		

Its	coefficient	is	quan3zed	in	integer	units	of	e2/h	(von	Klitzing	
conduc3vity!)	and	independent	under	con3nuous	deforma3ons	of	
parameters	of	the	theory.

How	does	topology	result	from		a	1-loop	Feynman	diagram??
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Using Ward identity, Chern-Simons coefficient in d= 2n+1 is proportional to

where S(p) is the fermion propagator. 

<latexit sha1_base64="poPSGW+XKjWDJlnqbAniXMn2Uv0="></latexit>

✏µ1...µd

Z
ddp

(2⇡)d
Tr S(p)

@S�1(p)

@pµ1

· · ·S(p)@S
�1(p)

@pµd

Volume 301, number 2,3 PHYSICS LETTERS B 4 March 1993 

( d -  1 )-dimensional anomaly for the single chiral fermion zeromode that is bound to the domam wall "~. This 
effect is a manifestation of the descent relations between the anomalies in odd and even dimensions [ 8 ]. 

In this letter, we show how to perform the Cal lan-Harvey (CH)  analysis for the lattice theory m euclidean 
space, where the zeromode spectrum is more complicated than m the cont inuum. It is far from obvious that the 
lamce theory should follow the CH cont inuum analysis; after all, the coefficient of the Chern-Slmons  action 
gets O( 1 ) contr ibut ions from arbitrarily heavy fermlon modes, and the heavy spectrum on the lattice looks 
nothing like m the cont inuum. In fact, we know the induced Chern-S imons  operator must have a coefficient 
very different from the cont inuum result. While ref. [3 ] analysed the spectrum of the theory for a Wilson cou- 
pling r =  1 and a domain  wall height 0 < mo< 2 and found a single chiral mode, a recent paper by Jansen and 
Schmaltz [ 9 ] analyses the same model for general parameters and shows that the spectrum bound to the domain 
wall changes discontinuously with varying mo/r ~2. They find that for 2k<  I mo/rl < 2k+2 ,  where k is an integer 
in the range O<~k<~d- 1, there are (dZ~) choral modes bound to the domain wall with chirality ( - 1 )k×s ign(mo);  
there are no choral fermions for I mo/rl > 2d. This is qmte different than the cont inuum theory, for which there 
is a single chiral mode for any mo¢: 0. If the induced Chern-Simons  action on the lattice is to correctly account 
for the anomalous divergences of the chlral fermton currents on the domain wall, then evidently its coefficient 
must also depend discontinuously on mo/r in a very particular way. We show in this letter that that does indeed 
happen ~3. 

The abelian Chern-S imons  action in d =  2n + l contmuous euchdean dimensions is given by 

f d 2n+ Ix Aa, 0a2Aa3 0a,,Aa2,+t • ( 1 ) F(a) CS ~ O t l  Ot2n+i "" 

When a massive fermion is integrated out of the theory it generates a c o n t n b u t m n  to the effective action of the 
form S~fr=c, Fcs; absorbing the gauge coupling into the gauge field, Fcs is seen to be o fd tmens ion  d, and so the 
coefficient c, will be dimensionless and the operator will not decouple for large fermion mass. The coefficient c, 
can be computed by calculating the relevant portmn of the graph in fig. 1. This is true on the lattice as well in 
the weak field, long wavelength limit for the gauge fields. Denoting the fermion propagator and photon vertex 
as S(p )  and iAu(p, p ' )  respectively, the graph of fig. 1 yields a value for c, which may be expressed as 

• 

l ~ a l #  I ct,,#notn+ j ~ 
c . =  (nT-i) ~ ) !  " 

" d2n+ Ip ] 
× (2rt)2,+ , T r [ S ( p ) A ~ , ( p , p - q t ) S ( p - q ~ )  ...A . . . .  (P+q"+~'P) q,=o" (2) 

BZ 

4~ It should be pointed out that if the magmtude of the Chern-Slmons current is regular dependent, the graph needs to be regulated. A 
regulator cannot change the divergence of the current, however. We thank M. Lfischer for this comment. 

42 All dlmenslonful parameters are gdven m lattice units. By a domam wall of height mo we mean a spatially dependent mass term 
re(s) --. +mo as s-, + oo, where s is the coordinate transverse to the domain wall. 

43 The dependence of the reduced Chern-Slmons actmn on the Wdson couphng • has been previously discussed for three d~mensmns m 
the continuum hmlt (spatmlly constant rn--,0) in ref. [ 10] and for Iml < 1 m ref. [ I 1 ] Some of the techmques used m this letter are 
samdar to those found m the latter work. 

---> \ / <-- 
ql ~ qn+1 

Fig. 1. The Feynman diagram m 2n+ I dtmensmns conmbutmg 
to the induced Chern-Simons acuon for abehan gauge fields, 
Y 7=+1 ~ q, = 0. Graphs with mulUple photon vertmes pecuhar to the 
latuce do not conmbute, as each A field from such a vertex has 
the same Lorentz index and the contnbutlon vanishes by the an- 
usymmetry of the ~ tensor 

220 



D. B. Kaplan ~ PASCOS 2024~ Quy Nhon, Vietnam 7/9/24

Using Ward identity, Chern-Simons coefficient in d= 2n+1 is proportional to

where S(p) is the fermion propagator. 
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( d -  1 )-dimensional anomaly for the single chiral fermion zeromode that is bound to the domam wall "~. This 
effect is a manifestation of the descent relations between the anomalies in odd and even dimensions [ 8 ]. 

In this letter, we show how to perform the Cal lan-Harvey (CH)  analysis for the lattice theory m euclidean 
space, where the zeromode spectrum is more complicated than m the cont inuum. It is far from obvious that the 
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nothing like m the cont inuum. In fact, we know the induced Chern-S imons  operator must have a coefficient 
very different from the cont inuum result. While ref. [3 ] analysed the spectrum of the theory for a Wilson cou- 
pling r =  1 and a domain  wall height 0 < mo< 2 and found a single chiral mode, a recent paper by Jansen and 
Schmaltz [ 9 ] analyses the same model for general parameters and shows that the spectrum bound to the domain 
wall changes discontinuously with varying mo/r ~2. They find that for 2k<  I mo/rl < 2k+2 ,  where k is an integer 
in the range O<~k<~d- 1, there are (dZ~) choral modes bound to the domain wall with chirality ( - 1 )k×s ign(mo);  
there are no choral fermions for I mo/rl > 2d. This is qmte different than the cont inuum theory, for which there 
is a single chiral mode for any mo¢: 0. If the induced Chern-Simons  action on the lattice is to correctly account 
for the anomalous divergences of the chlral fermton currents on the domain wall, then evidently its coefficient 
must also depend discontinuously on mo/r in a very particular way. We show in this letter that that does indeed 
happen ~3. 

The abelian Chern-S imons  action in d =  2n + l contmuous euchdean dimensions is given by 
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When a massive fermion is integrated out of the theory it generates a c o n t n b u t m n  to the effective action of the 
form S~fr=c, Fcs; absorbing the gauge coupling into the gauge field, Fcs is seen to be o fd tmens ion  d, and so the 
coefficient c, will be dimensionless and the operator will not decouple for large fermion mass. The coefficient c, 
can be computed by calculating the relevant portmn of the graph in fig. 1. This is true on the lattice as well in 
the weak field, long wavelength limit for the gauge fields. Denoting the fermion propagator and photon vertex 
as S(p )  and iAu(p, p ' )  respectively, the graph of fig. 1 yields a value for c, which may be expressed as 
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4~ It should be pointed out that if the magmtude of the Chern-Slmons current is regular dependent, the graph needs to be regulated. A 
regulator cannot change the divergence of the current, however. We thank M. Lfischer for this comment. 

42 All dlmenslonful parameters are gdven m lattice units. By a domam wall of height mo we mean a spatially dependent mass term 
re(s) --. +mo as s-, + oo, where s is the coordinate transverse to the domain wall. 

43 The dependence of the reduced Chern-Slmons actmn on the Wdson couphng • has been previously discussed for three d~mensmns m 
the continuum hmlt (spatmlly constant rn--,0) in ref. [ 10] and for Iml < 1 m ref. [ I 1 ] Some of the techmques used m this letter are 
samdar to those found m the latter work. 
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Fig. 1. The Feynman diagram m 2n+ I dtmensmns conmbutmg 
to the induced Chern-Simons acuon for abehan gauge fields, 
Y 7=+1 ~ q, = 0. Graphs with mulUple photon vertmes pecuhar to the 
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the same Lorentz index and the contnbutlon vanishes by the an- 
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Using Ward identity, Chern-Simons coefficient in d= 2n+1 is proportional to

where S(p) is the fermion propagator. 

<latexit sha1_base64="poPSGW+XKjWDJlnqbAniXMn2Uv0="></latexit>

✏µ1...µd

Z
ddp

(2⇡)d
Tr S(p)

@S�1(p)

@pµ1

· · ·S(p)@S
�1(p)

@pµd

Volume 301, number 2,3 PHYSICS LETTERS B 4 March 1993 

( d -  1 )-dimensional anomaly for the single chiral fermion zeromode that is bound to the domam wall "~. This 
effect is a manifestation of the descent relations between the anomalies in odd and even dimensions [ 8 ]. 

In this letter, we show how to perform the Cal lan-Harvey (CH)  analysis for the lattice theory m euclidean 
space, where the zeromode spectrum is more complicated than m the cont inuum. It is far from obvious that the 
lamce theory should follow the CH cont inuum analysis; after all, the coefficient of the Chern-Slmons  action 
gets O( 1 ) contr ibut ions from arbitrarily heavy fermlon modes, and the heavy spectrum on the lattice looks 
nothing like m the cont inuum. In fact, we know the induced Chern-S imons  operator must have a coefficient 
very different from the cont inuum result. While ref. [3 ] analysed the spectrum of the theory for a Wilson cou- 
pling r =  1 and a domain  wall height 0 < mo< 2 and found a single chiral mode, a recent paper by Jansen and 
Schmaltz [ 9 ] analyses the same model for general parameters and shows that the spectrum bound to the domain 
wall changes discontinuously with varying mo/r ~2. They find that for 2k<  I mo/rl < 2k+2 ,  where k is an integer 
in the range O<~k<~d- 1, there are (dZ~) choral modes bound to the domain wall with chirality ( - 1 )k×s ign(mo);  
there are no choral fermions for I mo/rl > 2d. This is qmte different than the cont inuum theory, for which there 
is a single chiral mode for any mo¢: 0. If the induced Chern-Simons  action on the lattice is to correctly account 
for the anomalous divergences of the chlral fermton currents on the domain wall, then evidently its coefficient 
must also depend discontinuously on mo/r in a very particular way. We show in this letter that that does indeed 
happen ~3. 

The abelian Chern-S imons  action in d =  2n + l contmuous euchdean dimensions is given by 

f d 2n+ Ix Aa, 0a2Aa3 0a,,Aa2,+t • ( 1 ) F(a) CS ~ O t l  Ot2n+i "" 

When a massive fermion is integrated out of the theory it generates a c o n t n b u t m n  to the effective action of the 
form S~fr=c, Fcs; absorbing the gauge coupling into the gauge field, Fcs is seen to be o fd tmens ion  d, and so the 
coefficient c, will be dimensionless and the operator will not decouple for large fermion mass. The coefficient c, 
can be computed by calculating the relevant portmn of the graph in fig. 1. This is true on the lattice as well in 
the weak field, long wavelength limit for the gauge fields. Denoting the fermion propagator and photon vertex 
as S(p )  and iAu(p, p ' )  respectively, the graph of fig. 1 yields a value for c, which may be expressed as 

• 

l ~ a l #  I ct,,#notn+ j ~ 
c . =  (nT-i) ~ ) !  " 

" d2n+ Ip ] 
× (2rt)2,+ , T r [ S ( p ) A ~ , ( p , p - q t ) S ( p - q ~ )  ...A . . . .  (P+q"+~'P) q,=o" (2) 

BZ 

4~ It should be pointed out that if the magmtude of the Chern-Slmons current is regular dependent, the graph needs to be regulated. A 
regulator cannot change the divergence of the current, however. We thank M. Lfischer for this comment. 

42 All dlmenslonful parameters are gdven m lattice units. By a domam wall of height mo we mean a spatially dependent mass term 
re(s) --. +mo as s-, + oo, where s is the coordinate transverse to the domain wall. 

43 The dependence of the reduced Chern-Slmons actmn on the Wdson couphng • has been previously discussed for three d~mensmns m 
the continuum hmlt (spatmlly constant rn--,0) in ref. [ 10] and for Iml < 1 m ref. [ I 1 ] Some of the techmques used m this letter are 
samdar to those found m the latter work. 

---> \ / <-- 
ql ~ qn+1 

Fig. 1. The Feynman diagram m 2n+ I dtmensmns conmbutmg 
to the induced Chern-Simons acuon for abehan gauge fields, 
Y 7=+1 ~ q, = 0. Graphs with mulUple photon vertmes pecuhar to the 
latuce do not conmbute, as each A field from such a vertex has 
the same Lorentz index and the contnbutlon vanishes by the an- 
usymmetry of the ~ tensor 

220 

Example:	free	Dirac	fermion

<latexit sha1_base64="tOeInoiYU7BYBium2YX1Yc3QmeM=">AAACH3icbZDLSsNAFIYn9VbrLerSzWgRKkJJRKoboejGZUV7gSaUyWTSDp1JwsxEKCFrn8MHcKuP4E7c9gl8DadtFrb1wMDP/58zZ+bzYkalsqyxUVhZXVvfKG6WtrZ3dvfM/YOWjBKBSRNHLBIdD0nCaEiaiipGOrEgiHuMtL3h3SRvPxMhaRQ+qVFMXI76IQ0oRkpbPfP4sRKfwRvoBALh1M5S6kiG5ID4aZzBc8iznlm2qta04LKwc1EGeTV65o/jRzjhJFRYXyW7thUrN0VCUcxIVnISSWKEh6hPulqGiBPpptOvZPBUOz4MIqFPqODU/TuRIi7liHu6kyM1kIvZxPwv6yYquHZTGsaJIiGeLQoSBlUEJ1ygTwXBio20QFhQ/VaIB0hDUZre3JacT1bSZOxFDsuidVG1a9Xaw2W5fpszKoIjcAIqwAZXoA7uQQM0AQYv4A28gw/j1fg0vozvWWvByGcOwVwZ419LDqJs</latexit>

S(p) =
1

i/p+m

<latexit sha1_base64="NMHqHR+jsUa/2NslWVvaZUWyymY="></latexit>

@S�1(p)

@p↵
= i�↵

Feynman diagram computes the winding number of S(p) as a map from 
momentum space to Dirac spinor space… much more general than just for free 
Dirac fermion — also true for fermions on a lattice.
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Using Ward identity, Chern-Simons coefficient in d= 2n+1 is proportional to
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momentum space to Dirac spinor space… much more general than just for free 
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Usual tuning for  
Wilson fermions (4d)

Aoki phase

Phase diagram for lattice QCD with Wilson fermions in 5d Euclidian spacetime

S Aoki, Prog Th Phys 122 (1996) 179
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Usual tuning for  
Wilson fermions (4d)

Aoki phase

Phase diagram for lattice QCD with Wilson fermions in 5d Euclidian spacetime

S Aoki, Prog Th Phys 122 (1996) 179

Topological phases —  
where to sit for chiral domain wall fermions

m/r
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M. Golterman, K. Jansen, DBK, Phys. Lett. B 301 (1993) 219

DBK, Phys. Lett. B 288 (1992) 342

The	phenomenon	of	massless	edge	states	at	topological	phase	
boundaries	exists	for	la.ce	fermions.

A	5d	strip	of	la.ce	with	4d	boundaries	is	now	oven	used	to	simulate	
la.ce	QCD	with	very	good	chiral	symmetry,	useful	for	many	applica3ons.
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Obtain	almost	massless	RH	&	LH	Weyl	

fermions…	mass		
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Wilson	fermions	on	the	5d	strip	are:

• Useful	for	performing	la.ce	QCD	computa3ons	

•Useless	for	simula3ng	a	chiral	gauge	theory	

-	vector-like	theory	(LH	and	RH	fermions	have	same	gauge	charges)	

-chiral	symmetry	is	broken	by	a	3ny	amount	(exponen3ally	small	in	size	of	5th	
dimension)	—	not	exact	as	needed	for	chiral	gauge	theory
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Wilson	fermions	on	the	5d	strip	are:

• Useful	for	performing	la.ce	QCD	computa3ons	

•Useless	for	simula3ng	a	chiral	gauge	theory	

-	vector-like	theory	(LH	and	RH	fermions	have	same	gauge	charges)	

-chiral	symmetry	is	broken	by	a	3ny	amount	(exponen3ally	small	in	size	of	5th	
dimension)	—	not	exact	as	needed	for	chiral	gauge	theory

But	what	happens	on	la?ce	with	a	single	boundary	between	topological	phases?
DB	Kaplan:	Phys.	Rev.	Lett.	132	(2024)	141603,		arXiv:2312.01494	
DB	Kaplan,	S.	Sen:		Phys.	Rev.	Lett.	132	(2024)	141604,		arXiv:2312.04012
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Consider	Dirac	fermion	an	a	disk:

m
R
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Shouldn’t	this	have	a	single	Weyl	fermion	edge	state?			

Which	must	be	exactly	massless?	

Which	can	be	realized	with	Wilson	fermions	on	a	la.ce?

Edge	states	on	manifold	with	a	single	boundary:
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open	BC		

Weyl	edge	state?		
Look	at	1+1	dispersion	rela3on
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If	you	want	E	vs	p	for	the	edge	
state,	plot	E	vs	J/R
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Nielsen-Ninomiya	would	have	you	believe	this	is	not	possible	for	sensible	system
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Last	(important!)	piece	of	the	puzzle:		how	to	gauge?

d+1	theory	with	Nf	flavors	has	exact	U(Nf)	global	symmetry…can	easily	gauge	a	
subgroup	in	the	con3nuum	or	the	la.ce.	

…but	want	a	d-dimensional	gauge	theory,	not	d+1…unlike	CM	systems

Recipe:	Define	bulk	gauge	fields	Bµ	to	be	func3onals	of	the	boundary	values	Aµ	;	
integrate	only	over	the	Aµ	in	the	path	integral

4

which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For	example,	Bµ	can	be	solu3on	to	Euclidian	YM	eq.	subject	to	this	BC.
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boundary is the field being integrated over in the path in-
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is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
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will have a local d-dimensional description only when the
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mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
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must take the form
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is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
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but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if
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These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
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work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].
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with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role
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tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if

2
These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For	example,	Bµ	can	be	solu3on	to	Euclidian	YM	eq.	subject	to	this	BC.

In	general	this	will	give	a	terribly	nonlocal	theory:			

Bulk	fermion	modes	generate	a	Chern	Simons	operator	in	the	bulk		which	is	a	func3on	of	Bµ	
and	therefore	a	nonlocal	func3onal	of	the	edge	gauge	fields	Aµ	
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which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
r=R

= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if
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(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For	example,	Bµ	can	be	solu3on	to	Euclidian	YM	eq.	subject	to	this	BC.

In	general	this	will	give	a	terribly	nonlocal	theory:			

Bulk	fermion	modes	generate	a	Chern	Simons	operator	in	the	bulk		which	is	a	func3on	of	Bµ	
and	therefore	a	nonlocal	func3onal	of	the	edge	gauge	fields	Aµ	

…but	this	is	the	only	marginal	operator	generated	—	and	its	coefficient	vanishes	if	edge	chiral	gauge	
theory	is	anomaly-free
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which vanishes in the large mR limit. This is consistent
with the above observation that the dispersion relation
for the edge states appears to have a nonanalyticity large
j ⇠ mR. It is unclear whether this is a serious flaw with
this proposal, or whether the fact that it is exponentially
small in R means that the nonlocality is under control.

I now turn to the question of gauging the theory. The
d+1 dimensional theory with N copies of fermions can be
gauged in a straightforward way because the action con-
sists of Dirac fermions with an exact U(N) global sym-
metry. However, if one wants to describe a d-dimensional
chiral gauge theory on the boundary, and not a theory
of d-dimensional surface modes interacting with d+ 1 di-
mensional gauge fields, one must find a way for the gauge
fields in the bulk to be completely determined by their
values on the surface, and not have independent bulk de-
grees of freedom. Therefore we must define a gauge field
Bµ over the whole disc in such a way that it only depends
on the gauge field’s boundary value,

Bµ(x‹, r, ◊)

----
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= Aµ(x‹, ◊) , (25)

where the d-dimensional gauge field Aµ living on the
boundary is the field being integrated over in the path in-
tegral, subject to the usual measure e

-SY M , where SY M

is the d-dimensional Yang-Mills action.
It then becomes possible to understand better the role

of gauge anomalies in defining a d-dimensional chiral
gauge theory using anomaly in-flow arguments. When in-
tegrating out the regulated bulk modes, a Chern-Simons
operator involving Bµ will be generated in the bulk, and
it is the only relevant operator one can expect. With
the Bµ fields being nonlocal functionals of the Aµ gauge
fields at the boundary, the existence of the Chern-Simons
operator will in general preclude interpreting the theory
of the edge states as being a local d-dimensional gauge
theory. However, the exception is when the coe�cient of
the Chern-Simons operator vanishes, which occurs pre-
cisely when the surface modes are in an anomaly-free
representation of the gauge theory [33]. Therefore the
conclusion is that when the Bµ fields are introduced and
their boundary values Aµ are integrated over, the theory
will have a local d-dimensional description only when the
gauge anomalies cancel.

Anomaly inflow and the existence of chiral edge states
at the boundary between topological phases are inti-
mately related. Neither makes any sense, however, until
the theory is regulated – there is no intrinsic topological
meaning to a Dirac fermion with mass m as opposed to
-M ; only when the momentum space for bulk modes is
compact do the topological features of the theory emerge.
For the continuum theory, the regulator could consist of
a Pauli-Villars field with spatially constant mass -M ,
so that the exterior of the disc is topologically trivial
(the contributions of the regulator and the fermion to a
Chern-Simons operator cancel in the exterior, but add in
the interior of the disc). As shown in Ref. [34], the in-
troduction of the regulator solves another unsatisfactory

feature of the model described above. The fermion deter-
minant for a chiral fermion in the presence of gauge fields
must take the form


det /D exp(i„[B]), where det /D is

the determinant of the massless Dirac operator, and „[B]
is some functional of Bµ that needs to be uniquely de-
fined in a sensible way. However, the eigenvalues µj com-
puted in eq. (21) intrinsically depended on my choice of
phase for the f eigenfunctions relative to the b eigen-
functions, as evident in their definition in eq. (5). This
phase ambiguity has no consequence in the free theory,
but must be eliminated in defining a chiral gauge the-
ory. As in Ref. [34], the phase ambiguity is resolved by a
matching ambiguity in contributions from the regulator,
and the authors identify the phase „[A] with -fi÷[B],
where ÷ is the ÷-invariant is the gauge invariant, reg-
ulated sum of signs of the eigenvalues of the bulk Dirac
operator subject to generalized APS boundary conditions
in the presence of the Bµ bulk gauge field2 The functional
÷[B] is perturbatively related to the Chern-Simons op-
erator, but contains additional information. When the
edge states are in a representation free of gauge anoma-
lies, not only does the Chern-Simons contribution cancel,
but the phase exp(-ifi÷[B]) of the fermion determinant
becomes independent of the gauge field in the bulk and
only depends on its boundary value, the physical gauge
field Aµ.

For practical applications one needs a concrete pro-
posal for how to continue the gauge fields into the
bulk. One possible definition, considered previously in
Refs. [36, 37] for related reasons, is to have Bµ be the
solution to the Euclidian equations of motion subject to
the above boundary condition,

ˆrBµ = D‹Gµ‹ , µ, ‹ = 1, . . . (d - 1), ◊ ,

Bµ(x‹, R, ◊) = Aµ(x‹, ◊) ,
(26)

where

Dµ = ˆµ + [Bµ, ·] ,

Gµ‹ = ˆµB‹ - ˆ‹B‹ + [Bµ, B‹ ] . (27)

This is referred to as gradient flow, and has been widely
used for unrelated applications [38, 39]. One of its fea-
tures is that it preserves d-dimensional gauge invariance,
although with the cylindrical geometry, such gauge trans-
formations will be singular at r = 0. Whether this is a
satisfactory solution is not completely clear, and a careful
treatment of potential obstacles to continuing the gauge
field into the bulk is beyond the scope of this Letter,
but needs to be considered more fully. In any case, if
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These are boundary conditions defined to render /D self-adjoint

(or anti self-adjoint) in the bulk, equivalent to having vanishing

normal current at the boundary. An assumption going into this

result is that the bulk gauge fields are independent of r near the

boundary, on the scale of m-1
. Ref. [34] was based on earlier

work by one of the authors [35], which in turn used vacuum

overlap arguments similar to those introduced in [9–13].

For	example,	Bµ	can	be	solu3on	to	Euclidian	YM	eq.	subject	to	this	BC.

In	general	this	will	give	a	terribly	nonlocal	theory:			

Bulk	fermion	modes	generate	a	Chern	Simons	operator	in	the	bulk		which	is	a	func3on	of	Bµ	
and	therefore	a	nonlocal	func3onal	of	the	edge	gauge	fields	Aµ	

This	theory	will	be	a	local	d-dimensional	theory	in	the	infrared	iff	the	
chiral	gauge	theory	is	anomaly-free	(like	the	SM!)

…but	this	is	the	only	marginal	operator	generated	—	and	its	coefficient	vanishes	if	edge	chiral	gauge	
theory	is	anomaly-free
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The	whole	story?		No.	

Golterman	&	Shamir	arXiv:1404.16372	(2024):		U(1)A	behaves	wrong:	’t	Hoov	operators	from	
instantons	involve	spurious	fermion	zeromodes	in	5d	bulk.	

Possible	solu3ons	might	exist…	but	only	for	the	case	θQCD=0?		Could	this	be	a	prerequisite	for	
defining	the	SM	nonperturba3vely?		Too	early	to	say,	work	in	progress.	
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The	whole	story?		No.	

Golterman	&	Shamir	arXiv:1404.16372	(2024):		U(1)A	behaves	wrong:	’t	Hoov	operators	from	
instantons	involve	spurious	fermion	zeromodes	in	5d	bulk.	

Possible	solu3ons	might	exist…	but	only	for	the	case	θQCD=0?		Could	this	be	a	prerequisite	for	
defining	the	SM	nonperturba3vely?		Too	early	to	say,	work	in	progress.	

The	first	task	is	to	reproduce	QCD	effects	(or	1+1	dimension	analogs)	with	a	setup	like	this.

Are	there	other	unexpected	predic3ons,	nonperturba3ve	effects?	
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Like	condensed	maGer	system,	topological	“maGer”	is	ubiquitous	in	rela3vis3c	
quantum	field	theories	with	a	gap,	and	such	materials	support	chiral	edge	states

These	topological	phases	can	be	exploited	on	the	la.ce	for	simula3ng	Weyl	
fermions,	defying	the	Nielsen-Ninomiya	theorem	by	viola3ng	some	of	its	
assump3ons.

It	look	like	it	may	be	possible	to	gauge	such	theories	as	local	4d	theories	if	the	gauge	
anomalies	cancel	(as	they	do	in	the	SM).

Hopefully	before	long	a	simula3on	of	nonperturba3ve	effects	in	the	SM	might	be	
possible.

Summary
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Ques3on	for	PASCOS	2024:

…but	if	it	turns	out	to	be	the	only	feasible	way	to	define	the	SM,		should	we	
take	the	hint	that	this	might	be	how	the	real	world	works?		

Can	a	cosmology	for	such	a	world	make	sense	(remember	—	the	gauge	
fields	are	weird)?

A	fivh	dimension	was	introduced	as	a	“trick”	for	nonperturba3vely	defining	the	
Standard	Model	on	a	la.ce…

…or	is	there	perhaps	a	more	natural	formula3on	to	confine	the	propaga3ng	
gauge	fields	to	the	boundary?	
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An	exci3ngly	simple	picture	is	emerging:			
Chiral	gauge	theory	as	a	boundary	theory,	without	requiring	new	dynamics

Conclusions
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Conclusions

Construc3on	“understands”	anomalies:		local	4D	theory	emerges	only	if	gauge	
anomalies	cancel	(discrete	and	perturba3ve)
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An	exci3ngly	simple	picture	is	emerging:			
Chiral	gauge	theory	as	a	boundary	theory,	without	requiring	new	dynamics

Does	it	work?		Too	early	to	tell…		
….but	the	Nielsen-Ninomiya	theorem	is	no	longer	the	obstacle.
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Construc3on	“understands”	anomalies:		local	4D	theory	emerges	only	if	gauge	
anomalies	cancel	(discrete	and	perturba3ve)
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An	exci3ngly	simple	picture	is	emerging:			
Chiral	gauge	theory	as	a	boundary	theory,	without	requiring	new	dynamics

Does	it	work?		Too	early	to	tell…		
….but	the	Nielsen-Ninomiya	theorem	is	no	longer	the	obstacle.

➤	Do	``non-universal’’	features	of	a	regulator	for	the	Standard	Model	tell	
us	about	constraints	on	the	world?	

• Constraints	on	θQCD?	

• The	world	as	a	4D	boundary	of	a	5D	universe?

Conclusions

Construc3on	“understands”	anomalies:		local	4D	theory	emerges	only	if	gauge	
anomalies	cancel	(discrete	and	perturba3ve)


