

ATLAS and CMS Higgs measurements

Anne-Catherine Le Bihan (CNRS) on behalf of the ATLAS and CMS experiments

PASCOS 2024, 29th International Symposium on Particles, String and Cosmology July 7-13 2024, Quy Nhơn, Việt Nam

Higgs boson Discovered in 2012

Higgs mechanism expected to give mass to particles...

Couplings (or $\sqrt{}$) proportional to the mass of the coupled particle...

Over three orders of magnitude

- Great precision from LHC's Run 2 data
- So far excellent compatibility with theory

What Else?

Higgs decays 10 years after discovery

<u>Nature 607 (2022) 52</u> <u>Nature 607 (2022) 60</u>

Couplings to **bosons** and **3rd generation fermions** are known with a precision of ~10% Evidence only for $H \rightarrow \mu\mu$

Higgs production modes 10 years after discovery

Nature 607 (2022) 52 Nature 607 (2022) 60

Global signal strength modifiers

 μ = 1.05 ± 0.06 (ATLAS) μ = 1.002 ± 0.057 (CMS)

Observation of the usual production modes ggH, VBF, VH, ttH

Higgs decays 2nd generation of fermions

$H \rightarrow \mu \mu$: evidence for CMS (3.0 σ)

Narrow resonance over falling background Track refitting to PV and FSR energy recovery to improve mass resolution (1.5-2.1 GeV)

$H \rightarrow cc$: being searched for in VH production

Excellent progress on machine learning side! 5x better rejection with <u>ParticleNet</u>

PLB 812 (2021) 135980

ATLAS: 2.0σ (1.7σ)

Boosted and resolved, regressions all over the place (mass, E…) Expected limit 7.6 x SM 1.1 < Ικcl < 5.5 (Ικcl < 3.4)

Eur. Phys. J. C 82 (2022) 717

ATLAS: $|\kappa_c| < 8.5$ (12.4) at 95% CL

Higgs decays 1st generation of fermions

Upper limits: BR(H \rightarrow ee) < 3.6.10⁻⁴ (3.5.10⁻⁴) at 95%CL - ATLAS BR(H \rightarrow ee) < 3.0.10⁻⁴ (3.0.10⁻⁴) at 95%CL - CMS

Far from the SM BR(H \rightarrow ee) ~5.10⁻⁹...

Fit to m(ee) distribution in different event categories: 4 targeting gluon fusion, 2 targeting VBF production

Similar strategy than $H \rightarrow \mu\mu$ BR($H \rightarrow e\mu$)< 6.2.10⁻⁵ (5.9.10⁻⁵)

$H \rightarrow Z\gamma$

First evidence at 3.4 σ (1.6 σ) thanks to ATLAS+CMS combination!

 $\mu = 2.2 \pm 0.7$

 1.9σ away from the SM prediction

Rare decay, branching ratio of 0.15%. Indirect probe of BSM physics in the loops

PRL 132 (2024) 021803

Both experiments observe a modest excess of 2.2-2.6 o

Rare decays to probe quark Yukawas

 $H \rightarrow K^{*0}, D^{*0}, B_s^{*0}, B^{*0}\gamma$ are clean probes of flavour changing Yukawa interactions

Broad range of rare decays being scrutinised...

ATL-PHYS-PUB-2023-004

Radiative Higgs boson decays to charmonium to probe charm Yukawa $H \rightarrow \psi(nS) \gamma, \psi(nS) \rightarrow \mu^+\mu^-$

Comparable limits on BR and κ_c/κ_γ constraints obtained by ATLAS and CMS -157 < к_c /кү < 199 at 95%CL <u>CMS-PAS-SMP-22-012</u> -133 < к_c /кү < 175 at 95%CL <u>Eur. Phys. J. C 83 (2023) 781</u> Combining decay modes and production modes

Measurement in **bins of production mode** and **kinematic/jet multiplicity bins** To probe the **kinematic dependance of SM** & look for **BSM effects in tails**

 \rightarrow Useful for combinations and consistent treatment of theory uncertainties

LHC Higgs WG - STXS 1.2

First STXS 1.2 - with merged bins - in Nature papers

Recent updates for instance for $H \rightarrow bb$, ttH and VH

JHEP 06 (2022) 97

PRD 109 (2024) 092011

 $H \rightarrow WW^*$ and $H \rightarrow ZZ^*$

$v_s = 13 \text{ IeV}, 139 \text{ fb}$ $m_{\mu} = 125.09 \text{ GeV}, v < 2.5$			Stat.				
	Syst.	SM					
				Total Stat. Syst.			
	0-jet, p_{τ}^{H} < 200 GeV		1.27	$^{+0.18}_{-0.17}$ ($_{\pm 0.08}$, $^{+0.16}_{-0.15}$)			
	1-jet, p_{τ}^{H} < 60 GeV	 -	0.66	$^{+0.59}_{-0.58}\;\bigl({}^{+0.30}_{-0.29}\;, {}^{+0.51}_{-0.50} \bigr)$			
gg →H (WW*)	1-jet, $60 \le p_T^H < 120 \text{ GeV}$	H H	0.68	$^{+0.49}_{-0.46}$ ($_{\pm 0.32}$, $^{+0.37}_{-0.33}$)			
	1-jet, 120 ≤ p_{τ}^{H} < 200 GeV	H -I	1.43	$^{+0.89}_{-0.76}\;\bigl({}^{+0.63}_{-0.62}\;, {}^{+0.62}_{-0.44}\bigr)$			
	≥ 2-jet, <i>p</i> ^{<i>H</i>} ₇ < 200 GeV	I I	1.54	+0.95 (+0.43 , +0.85) -0.84 (-0.42 , -0.72)			
	$p_{\tau}^{H} \ge 200 \text{ GeV}$	I I	1.37	+0.91 (+0.63 ,+0.65) -0.76 (-0.62 ,-0.44)			
	·						
	\geq 2-jet, 350 $\leq m_{jj} <$ 700 GeV, $p_{_T}^{_H} <$ 200 GeV	H III	0.12	+0.60 (+0.45 -0.58 (-0.41 ,±0.41)			
	\geq 2-jet, 700 $\leq m_{jj} <$ 1000 GeV, $p_{_T}^{H} <$ 200 GeV	I I	0.57	+0.68 (+0.57 , +0.37) -0.61 (-0.51 , -0.33)			
$qq \rightarrow Hqq \; (WW^*)$	\geq 2-jet, 1000 $\leq m_{jj} <$ 1500 GeV, $p_{_T}^{_H} <$ 200 GeV	Here I	1.32	+0.64 (+0.50 +0.40)			
	\geq 2-jet, $m_{j} \geq$ 1500 GeV, $p_{\tau}^{\scriptscriptstyle H} < 200 \; {\rm GeV}$		1.19	+0.48 (+0.42 +0.23)			
	\geq 2-jet, $m_{j} \geq 350~{\rm GeV}, p_{\tau}^{H} \geq 200~{\rm GeV}$	—— —	1.54	+0.61 (+0.51 ,+0.34 -0.51 (-0.46 ,-0.22)			
	0-jet, p_{τ}^{H} < 10 GeV		0.93	+0.36 (+0.30 +0.19 -0.30 (-0.27 , -0.13)			
	0-jet, 10 ≤ p_{τ}^{H} < 200 GeV	•	1.15	+0.23 (+0.18 +0.14 -0.20 (-0.17 , -0.11)			
gg →H (ZZ*)	1-jet, $p_{\tau}^{H} < 60 \text{ GeV}$		0.31	$^{+0.43}_{-0.38} \left(^{+0.40}_{-0.36} , ^{+0.16}_{-0.13} \right)$			
	1-jet, $60 \le p_T^H < 120 \text{ GeV}$	⊢● -	1.42	$\substack{+0.52\\-0.42} \left(\substack{+0.42\\-0.38}, \substack{+0.30\\-0.18} \right)$			
	1-jet, 120 ≤ $p_{_{_{_{_{_{}}}}}}^H$ < 200 GeV	—	0.41	$^{+0.84}_{-0.59} \left(\begin{smallmatrix} +0.80 \\ -0.58 \end{smallmatrix} , \begin{smallmatrix} +0.23 \\ -0.08 \end{smallmatrix} \right)$			
	\geq 2-jet, p_{τ}^{H} < 200 GeV	—	0.35	$^{+0.60}_{-0.53} \left(\begin{smallmatrix} +0.55 \\ -0.51 \end{smallmatrix} \right. \stackrel{+0.23}{, -0.14} \right)$			
	$p_{\tau}^{H} \ge 200 \text{ GeV}$		2.41	$^{+1.52}_{-1.09} \left(^{+1.32}_{-1.04} , ^{+0.75}_{-0.31} \right)$			
qq →Hqq (ZZ*)	VBF		1.49	+0.63 (+0.61 +0.17)			
	≥ 2-iet, 60 < m _i < 120 GeV		151	+2.83 (+2.79 +0.45)			
	≥ 2-jet, <i>m</i> _{ii} ≥ 350 GeV, <i>p</i> ^H ₋ ≥ 200 GeV		0.18	-2.24 (-2.22 -0.29) +2.09 (+2.08 +0.18)			
	· » ···			- (- ;- /			
VH-lep (ZZ*)			1.29	+1.67 (+1.67 , +0.15) -1.05 (-1.05 , -0.01)			
+							
ttH (ZZ*)			1.73	+1.77 -1.14 (+1.72,+0.39 -1.13,-0.18			
–10 –	8 -6 -4 -2	⁰ 2 σ x B	4 6 normalized t	8 o SM value			

 $H \rightarrow \gamma \gamma$ and $H \rightarrow Z \gamma$

$H \rightarrow \tau \tau$, $H \rightarrow b \bar{b}$ and $H \rightarrow \mu \mu$

arXiv:2402.05742v1 sub. to JHEP

Vo - 12 ToV	120 fb ⁻¹			Sta
$v_s = 13 \text{ IeV}, 139 \text{ fb}^+$ $m_H = 125.09 \text{ GeV}, y_H < 2.5$		Syst.	5	SM
			Total Sta	ıt.
	1-jet, $120 \le p_{\tau}^{H} < 200 \text{ GeV}$		0.19 +0.68 (+0.	41 40 '
	≥ 1-jet, m_{jj} < 350 GeV, 0 ≤ p_T^H < 60 GeV		0.31 ±0.94 (±0.5	6
<i>gg</i> → <i>H</i> (ττ)	≥ 2-jet, m_{jj} < 350 GeV, 120 ≤ p_{T}^{H} < 200 GeV	4	0.60 +0.87 (±0.5	54,
	≥ 2-jet, m_{jj} ≥ 350 GeV, p_T^H < 200 GeV		3.55 +2.33 (+1.3	31
	$200 \le p_{\tau}^{H} < 300 \text{ GeV}$		1.02 +0.55 (+0.0	31
	$p_T^H \ge 300 \text{ GeV}$		1.27 +0.77 (+0. -0.54 (+0.	46 45
	≥ 2-jet, 60 ≤ <i>m_i</i> ≤ 120 GeV	 H	0.97 +0.66 (+0.5	55
$qq \rightarrow Hqq (\tau\tau)$	≥ 2-jet, <i>m_{ji}</i> ≥ 350 GeV		-0.63 \ -0.9	17 16
<i>ttH</i> (ττ)		⊨	1.24 ^{+1.35} _{-1.12} (^{+1.3}	 11 98
<i>qq→Hqq</i> (bb)	 ••	 ł	0.98 ^{+0.39} _{-0.38} (±0.3	- -
	$150 \le p_T^V < 250 \text{ GeV}$		0.79 +0.50 (+0.5	 34
$qq \rightarrow Hlv$ (bb)	$250 \le p_{\tau}^{V} < 400 \text{ GeV}$	-	1.10 +0.41 (+0.5	35 34
	$p_{\tau}^{V} \ge 400 \text{ GeV}$	•	1.50 ^{+0.93} (^{+0.1} -0.83 (^{+0.1}	78 72
	75 ≤ p ^v ₋ < 150 GeV	н	0.90 +0.71 (-0.	
	$150 \le p_{\perp}^{v} < 250 \text{ GeV}$	- · -	1 13 +0.37 (., , 27
<i>gg/qq →Hll/vv</i> (bb)	$250 \le p_{\perp}^{v} < 400 \text{ GeV}$	•	1 01 +0.39 (+0.3	35
	$p_T^V \ge 400 \text{ GeV}$		0.29 +0.92 (+0.1 -0.85 (-0.6	76 79
	<i>p</i> ^{<i>H</i>} ₇ < 120 GeV		1.10 ^{+1.05} _{-0.99} (±0.4	
	$120 \le p_{_{T}}^{_{H}} < 200 \text{ GeV}$		-0.22 +1.02 (+0.	72 70 ⁻
ttH (bb)	$200 \le p_{\tau}^{H} < 300 \text{ GeV}$	 -H	0.98 +0.91 (+0.7	71 58 '
	$300 \le p_T^H < 450 \text{ GeV}$		-0.23 ^{+0.73} _{-0.72} (^{+0.9}	58 54 '
	<i>p</i> ^{<i>H</i>} _{<i>T</i>} > 450 GeV	I	-0.19 ^{+1.48} (^{+1.4} -1.40 (^{-0.4}	06 91 '
aa →H, t7H (∝∞)			0.54 +0.85 (+0.9	
$aa \rightarrow Haa VH (aa)$		·	2 23 +1.32 (+1.3	28
	, 		-1.24 \ -1.3	22 '
-8 ·	-6 -4 -2 0	2 4 6		
_	$450 \le p_{-}^{H} < 650 \text{ GeV}$		-4.2 +6.4 (+5.0	
$aa \rightarrow H$ (bb)	· · · · · · · · · · · · · · · · · · ·		-9.4 \-5.0	

 $\sigma\,x\,B\,$ normalized to SM value

ttH multileptons not included, 78 signal yields extracted p-value of 99.4% to be compatible with SM

p-value of 94.5% to be compatible with SM

arXiv:2402.05742v1 sub. to JHEP

STXS measurements reinterpreted with EFT approach

Input measurements don't allow to constrain all dim 6 Wilson coefficients simultaneously

 \rightarrow 19 linear combinations in rotated basis

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d=6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d=8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots,$$

And reinterpretation in MSSM (7 new benchmarks) and different 2HDM models...

Differential measurements

Fiducial measurements to avoid extrapolations, **unfolded** for selection efficiencies and resolution effects Check kinematics & variables sensitive to new physics

Measurements available for H $\rightarrow \gamma\gamma$, H $\rightarrow ZZ^*$, H $\rightarrow \tau\tau$, H $\rightarrow WW$, H $\rightarrow b\bar{b}...$

14

ttH and tH measurements

2018: First observation combining main decay modes Run1 + Run2 (2016) **2018**: Observation in the multilepton final state **2020**: Observation in H $\rightarrow \gamma\gamma$

Latest Run 2 result: ttH,H \rightarrow bb for ATLAS and CMS

Common treatment of difficult irreducible tt+bb background

Comparable sensitivity to ttH in multileptons but $\mu~^{\sim}$ 0.3

CMS-PAS-HIG-19-011

Usage of machine learning and categorisation

 μ = 0.35 ± 0.20 (stat) ± 0.29 (syst) (ATLAS) μ = 0.33 ± 0.17 (stat) ± 0.21 (syst) (CMS)

Associated b quark production

3% of the total production cross section gluon fusion with gluon→bb splitting and b-fusion Accuracy of theoretical prediction of b-fusion of only 40%

interferences between b-fusion and gluon fusion

ZH treated as background

au au final states (including WW)

Upper limits: 3.7 (6.1) x SM at 95%CL

Electroweak VH measurement

Vector Boson Scattering

arXiv:2402.00426 arXiv:2405.16566

VH measurements traditionally performed in V to 2 leptons and H to fermions (large BR)

VBS production gives access to relative sign of $\kappa_{\!Z}$ and $\kappa_{\!W}$

ATLAS and CMS both exclude $\kappa_W/\kappa_Z < 0$ beyond 5σ in H $\rightarrow b\bar{b}$ final states

Inclusive cross section measurement

Run 3 - 13.6 TeV

Fiducial inclusive cross sections with 2022 ATLAS Run 3 data

- $H \rightarrow \gamma \gamma$ (29.0 fb⁻¹)
- $H \to ZZ^* \to 4 (31.4 \text{ fb}^{-1})$

Extrapolation to full phase space

- σ (pp→H) = 58.2 ± 8.7 pb - σ (pp→H) SM = 59.9 ± 2.6 pb

Mass, width and CP violation

Higgs boson mass

Mass from channels with best resolutions: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$ Multiple categories with different resolutions Reaching 0.1% precision

M_H = 125.08 ± 0.12 GeV (CMS 4 leptons) Best single measurement! <u>JHEP 08 (2023) 040</u> $M_{H} = 125.17 \pm 0.14 \text{ GeV} (\text{ATLAS di-photon})$ $M_{H} = 125.11 \pm 0.11 \text{ GeV} (\text{ATLAS, Best combination!})$

 $\sigma(m4\ell)$ improved by 3-8%: constraint to common vertex (with beam spot constraint) of the 4 lepton tracks + 9 $\delta4\ell/m4\ell$ categories

Higgs boson width

On- & off-shell ratio gives access to the Higgs boson width Assuming same couplings to on- and off-shell Higgs

$$\mu_{ZZ}^{\text{on}} \equiv \frac{\sigma_h \times \text{BR}(h \to ZZ \to 4\ell)}{[\sigma_h \times \text{BR}(h \to ZZ \to 4\ell)]_{\text{SM}}} \sim \frac{\kappa_{ggh}^2 \kappa_{hZZ}^2}{\Gamma_h / \Gamma_h^{\text{SM}}}$$
$$\mu_{ZZ}^{\text{off}} \equiv \frac{\mathrm{d}\overline{\sigma}_h}{[\mathrm{d}\overline{\sigma}_h]_{\text{SM}}} \sim \kappa_{ggh}^2(\hat{s}) \kappa_{hZZ}^2(\hat{s})$$

Measurement is statistically limited

Main uncertainties related to dominant qq \rightarrow (Z/ γ *)(Z/ γ *) \rightarrow 4 ℓ background modelling

CP violation - bosonic couplings

MELA discriminants in $H \rightarrow WW - ggH$, VBF, VH production EFT interpretations

Optimal observables in VBF (many channels), And H→ZZ, H→WW decays EFT interpretations

CP violation - fermionic couplings

Generalised Yukawa coupling, CP violation can occur at tree level!

$$L_Y = -\frac{m_l \phi}{\nu} (\kappa_l \overline{\psi_l} \psi_l + \tilde{\kappa}_l \overline{\psi_l} i \gamma_5 \psi_l) \qquad f_{cp}^{Hll} = \frac{|\tilde{\kappa}_l|^2}{|\kappa_l|^2 + |\tilde{\kappa}_l|^2} = \sin^2(\alpha^{Hll})$$

Angle between tau decay planes gives access to α^{HII} Several techniques depending on τ decay mode μ^{\pm} , e^{\pm} , π^{\pm} , ρ^{\pm} , $a_1^{1pr,3pr}$

CMS \rightarrow pure CP-odd hypothesis excl. at 3.0 σ (2.6 σ)JHEP 06 (2022) 012 $\rightarrow \alpha(H\tau\tau) = -1 \pm 19^{\circ}$

ATLAS \rightarrow pure CP-odd hypothesis excl. at 3.4 σ (2.1 σ) Eur. Phys. J. C 83 (2023) 563 $\rightarrow \alpha$ (H $\tau\tau$) = 9 ± 16° Top Yukawa CP structure probed in $t\bar{t}H, H \rightarrow 4l, \gamma\gamma$ and ggH loop with top quark dominance and also in $t\bar{t}H, H \rightarrow b\bar{b}$

CMS \rightarrow pure CP-odd hypothesis excl. at 3.2 σ (ttH,4l, $\gamma\gamma$) Phys. Rev. D 104 (2021) 052004

- → pure CP-odd hypothesis excl. at 1.0σ (ttH,bb) CMS-PAS-HIG-19-011
- ATLAS \rightarrow pure CP-odd hypothesis excl. at 3.9 σ (ttH, $\gamma\gamma$) Phys. Rev. lett. 125 (2020) 061802
 - → pure CP-odd hypothesis excl. at 1.2σ (ttH,bb)
 Phys. Lett. B 849 (2024) 138469
 23

Di-Higgs production allows to probe the **shape of the Higgs potential** by measuring the trilinear **self-coupling** λ of the Higgs boson 1 - 2 - 1

But destructive interference between triangle and box diagrams: small x-sec...

No golden channel, combination between many channels needed

3 leadings channels (bb $\gamma\gamma$, bb $\tau\tau$, bbbb) are reaching limits close to ~5 x SM

Global combinations leading to ~2.5-3 x SM <

Higgs_PAG_Summary_Plots CMS-PAS-HIG-23-006

VBF HH production allows to constrain κ_{2V}

HH \rightarrow bbbb boosted analyses from ATLAS and CMS exclude both $\kappa_{2V}=0$ with significances of respectively 3.4 σ (2.9 σ) and 6.3 σ

Conclusion & Outlook

Great progress in Higgs measurement properties since its discovery!

Higgs boson mass not predicted by SM, but is now known to 1 permille precision!
Higgs width compatible with SM with reasonable assumptions (using off-shell production)

Higgs couplings to gauge bosons, top, tau measured with <10% uncertainty

No sign of CP violation: many measurements performed, in bosonic and fermonic couplings, direct measurements and EFT approach

Rare decays being chased, can give insight to Yukawa couplings, $H \rightarrow meson \gamma$, $H \rightarrow \psi(nS)\gamma$

STXS interpretation and many differential measurements performed to assess the full picture

See parallel talks for more details! T1P1 on Tuesday afternoon

Higgs mass and width measurements at
ATLASLaura NasellaRare (SM) Higgs boson decays and rare
Higgs production modes at CMSJae-Bak KimHiggs self-coupling at CMS (including di-
Higgs resonant searches)Oguz Guzel

Conclusion & Outlook

Yet more precision and data needed to...

- observe the Higgs coupling to muons (3.0σ significance)
- observe $H \rightarrow Z\gamma$ (3.4 σ significance ATLAS+CMS)
- improve the limits on c-Yukawa (1.1 < $|\kappa_c|$ < 5.5)
- have evidence to strange, down, up quarks, electrons couplings
- have evidence for tH and bbH production modes
- have evidence for the Higgs self-coupling $(-1.4 < \kappa_{\lambda} < 6.1)$

Thanks for the interesting conference in this beautiful place!