SM Physics "Electroweak Physics, W,Z,VBS.."

Qiang Li (Peking University) 2024/7

Electroweak milestones: From infancy to adolescence

Z boson

171.2 GeV/c²

top

²/₃

Neutral currents 51; W/Z boson turns 41; Top quark now 29; Higgs turns 12.

Seattle snowmass summer meeting 2022

Direct and indirect searches for BSM

Rich results at the LHC (ATLAS, CMS)

CMS

Selected Topics with bias

W Mass/Width Single V Effective leptonic weak mixing angle V decay Di-boson: W/Z+Photon, WZ VBS: W+W-, WZ, polarization Tri-boson: W+Z/W+photon, EFT as the new SM EWK as novel tools Run 3: DY, W+W-Future

See also:

Recent tau g-2 measurement from CMS Zongsheng He (Peking University, Beijing)

VBF/VBS measurements in ATLAS Zhen Wang (TD Lee Institute Shanghai Jiao Tong University)

Precision W physics in ATLAS (mass, width and pT) Eram Syed Rizvi (Queen Mary University of London)

W Mass

HIGGS AND ELECTROWEAK | FEATURE

The W boson's midlife crisis

24 August 2023

Forty years after its discovery, the W boson continues to intrigue. Chris Hays describes recent progress in understanding a surprisingly high measurement of its mass using data from the former CDF experiment.

- CDF <u>W-boson mass</u> results: 80434 +- 9 MeV, differed significantly from the SM prediction and the other experimental results.
- Improved ATLAS result weighs in on the W boson: 80360 +- 16 MeV.
- LHCb W mass uncertainty as 32 MeV
- <u>Future Colliders</u>: ~ 0.3-0.4 MeV
- <u>W-boson mass combination WG</u>

Powerful tools for consistency test on over-constrained Standard Model

arXiv:2403.15085

ATLAS W Mass and Width

Re-analysis of previous 7 TeV result

- Improved fit with likelihood minimization (<u>PLH</u>) and uncertainty profiling rather than chi2
- extended studies of PDFs, impact of profiling demonstrated by inflating pre-fit uncertainties
- mW and FW measured simultaneously or fixing one to SM

Updated $m_W = 80366.5 \pm 15.9 \text{ MeV}$ (Γ_W fixed to SM)

 $\triangleright~$ It was $\delta m_W \,{\sim}\, 19$ MeV in 2017, with 9.2 MeV from PDFs

Using CT18	B PDFs]											
Unc. [MeV]	Total	Stat.	Syst.	PDF	A _i	Backg.	EW	е	μ	и _т	Lumi	Γ_W	PS
p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
mT	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

Fixing mw to SM, $\Gamma w = 2202 \pm 47$ MeV,

Eur. Phys. J. C 84 (2024) 315 Eur. Phys. J. C 83 (2023) 628

Drell-Yan precision

 N3LO QCD predictions obtained from DYTurbo

aN³LO MSHT PDF set.

- A negative correction of 0.4% from NLO EW included
- a p-value of 11% if one only includes the uncertainties in the PDFs for the predictions
- 2D differential distributions measured in both papers

LHCb 5.02 TeV measurement of Z production 2017 pp reference run data-set: 100/*pb*

Single W precision

PRD 102 (2020) 092012

- lepton eta-pT depends on W helicity, which is largely determined by parton distribution function.
- Can be used to constrain parton distribution function, modelling, etc.
- Precursor to CMS W Mass measurement.

Signal samples using POWHEG MiNNLO + Pythia8

- Consistent results for AFB, A4 and direct cos0 fits
 - PDF profiling reduces differences between Ο PDF sets
 - CT18Z chosen (pre-unblinding) as nominal: Ο best coverage of other PDF central values

Effective leptonic weak mixing angle CMS-PAS-SMP-22-010

- Fundamental EW parameter: $\sin^2 \theta_{\text{eff}}^{\ell} = (1 m_W^2 / m_Z^2) \kappa^{\ell}$
 - Measured via $Z/\gamma^* \rightarrow II$, asymmetry in lepton decay angle: $1 + \cos^2 \theta + 0.5A_0(1 3\cos^2 \theta) + A_4 \cos \theta$

eh

eg

ee

μμ

- Recent CMS measurement at 13 TeV
 - $\sin^2 \theta_{eff}^{\ell}$ measured via A_{FB} (similar to previous Run 1 approach)
 - New: unfolded A4 (for future reinterpretation)
- Strong dependence on PDFs
 - Profile in $\sin^2 \theta_{\text{eff}}^{\ell}$ fits
- Adds reconstruction of electrons outside tracker acceptance for increased A_{FB} sensitivity
 - e: |ŋ| < 2.5
 - g: $2.5 < |\eta| < 2.87$ (fwd. ECAL)
 - h: $3.14 < |\eta| < 4.36$ (fwd. HCAL)

+ Photos; NLO weak + universal HO corrections

CMS A_{EB} comb Preliminarv A_{FB} (sta+sys) cose 0.229 0.23 0.232 0.233 0.234 0.231 sin²0¹

 $\rightarrow A_{\rm FB} = 3/8A_4$

CMS-PAS-SMP-22-010 Effective leptonic weak mixing angle

PRD 105 (2022) 072008 PLB 842 (2023) 137563 PLB 854 (2024) 138705

W/Z decay

JHEP 01 (2024) 101

W decay branch ratio

No. 10 March 10	CMS	LEP
$\mathcal{B}(W \to e \overline{\nu}_e)$	$(10.83 \pm 0.01 \pm 0.10)\%$	$(10.71 \pm 0.14 \pm 0.07)$ %
$\mathcal{B}(W \to \mu \overline{\nu}_{\mu})$	$(10.94 \pm 0.01 \pm 0.08)\%$	$(10.63 \pm 0.13 \pm 0.07)$ %
$\mathcal{B}(W ightarrow au \overline{ u}_{ au})$	$(10.77 \pm 0.05 \pm 0.21)\%$	$(11.38 \pm 0.17 \pm 0.11)$ %
${\cal B}(W\to q\overline{q}')$	$(67.46 \pm 0.04 \pm 0.28)\%$	
Assuming LFU		
$\mathcal{B}(W o \ell \overline{ u})$	$(10.89 \pm 0.01 \pm 0.08)\%$	$(10.86 \pm 0.06 \pm 0.09)\%$
${\cal B}(W\to q\overline{q}')$	$(67.32 \pm 0.02 \pm 0.23)\%$	$(67.41 \pm 0.18 \pm 0.20)\%$

Z invisible decay width

$$\Gamma(Z \to \nu \overline{\nu}) = \frac{\sigma(Z + \text{jets})\mathcal{B}(Z \to \nu \overline{\nu})}{\sigma(Z + \text{jets})\mathcal{B}(Z \to \ell \ell)} \Gamma(Z \to \ell \ell)$$

The tension LEP noticed is not visible in ATLAS data

The inclusive measurement ΔA_{FB} differs from zero at the level of 2.4 standard deviations

<u>Phys. Rev. Lett. 126, 252002 (2021)</u> <u>Phys. Rev. D 105 (2022) 052003</u>

- Technique called <u>interference resurrection</u> used to enhance anomalous coupling sensitivity
- Phenomenon called radiation amplitude zero: a 0 in the LO cross section at $\Delta \eta(I,\gamma) = 0$

Table 4: Best fit values of C_{3W} and corresponding 95% CL confidence intervals as a function of the maximum p_T^{γ} bin included in the fit.

$p_{\rm T}^{\gamma}$ cutoff (GeV)	Best fit C_{3W} (TeV ⁻²)		Observed 95	⁶ % CL (TeV ⁻²)	Expected 95% CL (TeV $^{-2}$)		
	SM+int. only	SM+int.+BSM	SM+int. only	SM+int.+BSM	SM+int. only	SM+int.+BSM	
200	-0.86	-0.24	[-2.01, 0.38]	[-0.76, 0.40]	[-1.16, 1.27]	[-0.81, 0.71]	
300	-0.25	-0.17	[-0.81, 0.34]	[-0.39, 0.28]	[-0.56, 0.60]	[-0.33, 0.33]	
500	-0.13	-0.025	[-0.50, 0.25]	[-0.15, 0.12]	[-0.35, 0.38]	[-0.17, 0.16]	
800	-0.20	-0.033	[-0.49, 0.11]	[-0.10, 0.08]	[-0.29, 0.31]	[-0.097, 0.095]	
1500	-0.13	-0.009	[-0.38, 0.17]	[-0.062, 0.052]	[-0.27, 0.29]	[-0.066, 0.065]	

The technique will also be valuable in the future when sufficiently small values of aGCs are probed such that the interference contribution will be dominant

CMS-PAS-SMP-22-009

- pp collisions@13 TeV, Full Run2 statistics (138 fb-1)
- Fiducial and differential xsec measurement
- Limits on aNTGCs h3Z,γ and h4Z,γ
- Exactly 1 high-pT (>225 GeV) photon + MET
- BDT algorithm to identify high-pT photons (92% efficiency)
- True and fake photons bkgs

Parameter	Expected	Observed
$h_3^\gamma imes 10^4$	(-2.8, 2.9)	(-3.4, 3.5)
$h_4^\gamma imes 10^7$	(-5.9, 6.0)	(-6.8, 6.8)
$h_3^Z imes 10^4$	(-1.8,1.9)	(-2.2, 2.2)
$h_4^Z imes 10^7$	(-3.7, 3.7)	(-4.1, 4.2)

q Z/γ Z ν

JHEP 07 (2022) 032

WZ (polarization)

First observation of single longitudinally polarized W bosons in WZ production! 5.6σ (4.3 σ) obs (exp).

WZ (joint polarization)

Phys. Lett. B 843 (2023) 137895

Measurement performed as well separating by the W charge

- Significance on f_{00} at 6.9σ in W+Z
- Significance on f_{00} at 4.1σ in W-Z

WZ high PT polarization and RAZ

- This analysis focuses on WZ events with Z bosons required to have high transverse momenta
- Two fiducial regions featuring two longitudinally polarized bosons are defined.
- The first study of the Radiation Amplitude Zero effect
 - Events with two transversely polarized bosons are analyzed

arXiv:2402.16365

Signal regions								
	Radiation Amplitude Zero	00-enhanced region 1	00-enriched region 2					
Pass inclusive WZ event selection	\checkmark	\checkmark	\checkmark					
Transverse momentum of the Z boson (p_T^Z)	-	[100, 200] GeV	> 200 GeV					
Transverse momentum of the WZ system (p_T^{WZ})	< 20, 40, 70 GeV		< 70 GeV					

dominated by *TT* events with low momentum *W* and *Z* bosons [1, 2, 13]. This analysis focuses on *WZ* events with *Z* bosons required to have high transverse momenta (p_T^Z) . The combination of high p_T^Z and low p_T^{WZ} significantly reduces the TT contribution and increases f_{00} . As a result, f_{00} increases from 5 – 7% in the inclusive region to 20 – 30% in the region with high p_T^Z and low p_T^{WZ} [14].

	Measurement					
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$				
f_{00}	$0.19 \pm _{0.03}^{0.03} (\text{stat}) \pm _{0.02}^{0.02} (\text{syst})$	$0.13 \pm _{0.08}^{0.09} (\text{stat}) \pm _{0.02}^{0.02} (\text{syst})$				
f_{0T+T0}	$0.18 \pm _{0.08}^{0.07} (\text{stat}) \pm _{0.06}^{0.05} (\text{syst})$	$0.23 \pm _{0.18}^{0.17} (\text{stat}) \pm _{0.10}^{0.06} (\text{syst})$				
ftt	$0.63 \pm _{0.05}^{0.05} (\text{stat}) \pm _{0.04}^{0.04} (\text{syst})$	$0.64 \pm_{0.12}^{0.12} (\text{stat}) \pm_{0.06}^{0.06} (\text{syst})$				
f_{00} obs (exp) sig.	5.2 (4.3) σ	1.6 (2.5) σ				

5 sigma observation in 100 $< p_{T,Z} < 200$ GeV for f_{00}

Vector Boson Scattering: W+W- and WZ

PLB 841(2023)137495

arXiv:2403.04869 arXiv:2403.15296

PLB 841(2023)137495 Vector Boson Scattering: W+W- and WZ

arXiv:2403.04869

PLB 812 (2020) 136018

Polarized VBS

- Signal sample simulated in WW/pp center-of-mass frame
- Simultaneous fit on two BDT discriminant variables: $\mathbf{\underline{M}} W_{L}^{\pm} W_{L}^{\pm}$: signal BDT ($W_{L}^{\pm} W_{L}^{\pm}$ vs $W_{T}^{\pm} W_{X}^{\pm}$) and inclusive BDT (VBS vs Bkg.)
 - $\mathbf{V}_L^{\pm} W_X^{\pm}$: signal BDT ($W_L^{\pm} W_X^{\pm}$ vs $W_T^{\pm} W_T^{\pm}$) and inclusive BDT (VBS vs Bkg.)

proton

proton

PRL132 (2024) 021802

WZy observation

($e\mu\mu$, μee , eee, $\mu\mu\mu$) channels combined profile-likelihood fit in SR+2CRs

Process	SR	$ZZ\gamma CR$	$ZZ(e \rightarrow \gamma) \operatorname{CR}$
$WZ\gamma$	92 ± 15	0.21 ± 0.07	0.56 ± 0.14
$ZZ\gamma$	10.7 ± 2.3	23 ± 5	1.8 ± 0.4
$ZZ(e \rightarrow \gamma)$	3.0 ± 0.6	0.028 ± 0.020	30 ± 6
Ζγγ	1.05 ± 0.32	0.15 ± 0.06	0.29 ± 0.10
Nonprompt background	30 ± 6	-	-
Pileup γ	1.9 ± 0.7	-	-
Total yield	139 ±12	23 ± 5	33 ± 6
Data	139	23	33

PRL132 (2024) 121901

WWy Observation

- only eµ channel
- SSWW γ and TOP γ CRs, 5.6 (4.7) σ obs.(exp.)
- data-driven non-prompt backgrounds
- maximum likelihood fit of 2D binned distributions.

 $\mu^{
m obs.}_{
m combined}~=~1.31\pm0.17\,
m (stat)\pm0.21\,
m (syst)$

- Also sensitive to Higgs couplings with light quarks
 o no gluon fusion contribution due to Furry's theorem
- Further optimization targeting the Higgs characteristics

σ upper limits obs. (exp.) [fb]	$\kappa_{\rm q}$ limits obs. (exp.) at 95% CL
85 (67)	$ \kappa_{\rm u} \le 16000 \ (13000)$
72 (58)	$ \kappa_{\rm d} \le 17000 \ (14000)$
68 (49)	$ \kappa_{\rm s} \le 1700$ (1300)
87 (67)	$ \kappa_{\rm c} \le 200 \ (110)$

ATL-PHYS-PUB-2021-022 ATL-PHYS-PUB-2022-037 SMEFT: The new Standard Model

Phys. Rev. Lett. 131 (2023) 011803 Eur.Phys.J.C 83 (2023) 9, 824

VBS as a novel tool

arXiv:2402.00426 arXiv:2405.16566

Heavy Majorana searched up to 23TeV!

0νμμ experiment and effective neutrino mass probe • Excluded λ_{WZ} = -1 at >8 σ

• Measure μ for + λ_{WZ} signal Fit: $\hat{\mu} = 2.6^{+4.6}_{-4.5}$

<u>JHEP 08 (2023) 204</u> <u>PLB 848 (2024) 138376</u> <u>PLB 855 (2024) 138764</u> <u>CMS-PAS-SMP-22-017</u> <u>arXiv:2406.05101</u>

Run3

2

3

5

6

fast well to arrive at a new energy frontier 13.6 TeV

W+W- differential cross sections as a function of the jet multiplicity

DY cross section

14

√s (TeV)

13

12

11

10

Future

2020 European Strategy Update

"An electron-positron Higgs factory is the highestpriority next collider. For the longer term, the European particle physics community has the ambition to operate a protonproton collider at the highest achievable energy."

(European Strategy Update brochure)

Snowmass 2021

"The intermediate future is an *e*+*e*- Higgs factory, either based on a linear (ILC, C3) or circular collider (FCC-ee, CepC). In the long term EF envision a collider that probes the multi-TeV scale, up or above 10 TeV parton center-of-mass energy (FCC-hh, SppC, Muon Coll.)" (Energy Frontier Plenary by Alessandro Tricoli)

Operation mode			ZH	Z	W+M-	tī
\sqrt{s} [GeV]			240	91	160	360
	Rur	n time [years]	7	2	1	-
		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
(3	CDR 0 MW)	∫ <i>L dt</i> [ab-¹, 2 IPs]	5.6	16	2.6	-
Event yields [2 IPs]		1×10 ⁶	7×10 ¹¹	2×107	-	
	Run Time [years]		10	2	1	5
	100	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
st)	30 MW	∫ <i>L dt</i> [ab-¹, 2 IPs]	13	60	4.2	0.65
ate		Event yields [2 IPs]	2.6×10 ⁶	2.5×10 ¹²	1.3×10 ⁸	4×10 ⁵
		L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	26.7	0.8
Ē	50 MW	∫ <i>L dt</i> [ab-¹, 2 IPs]	21.6	100	6.9	1.0
		Event yields [2 IPs]	4.3×10 ⁶	4.1×10 ¹²	2.1×10 ⁸	6×10 ⁵

Future

Observable	I	oresen	ıt	FCC-ee	FCC-ee	Comment and
	value	±	error	Stat.	Syst.	leading error
$m_{\rm Z} \ ({\rm keV})$	91186700	±	2200	4	100	From Z line shape scan Beam energy calibration
$\Gamma_{\mathbf{Z}} \ (\text{keV})$	2495200	±	2300	4	25	From Z line shape scan Beam energy calibration
$\sin^2 \theta_{\rm W}^{\rm eff}(\times 10^6)$	231480	±	160	2	2.4	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration
$1/\alpha_{\rm QED}(m_Z^2)(\times 10^3)$	128952	±	14	3	\mathbf{small}	From $A_{FB}^{\mu\mu}$ off peak QED&EW errors dominate
$\mathbf{R}^{\mathbf{Z}}_{\ell}$ (×10 ³)	20767	±	25	0.06	0.2-1	Ratio of hadrons to leptons Acceptance for leptons
$\alpha_{\rm s}({\rm m_Z^2})~(\times 10^4)$	1196	±	30	0.1	0.4-1.6	From $\mathbf{R}^{\mathbf{Z}}_{\ell}$
$\sigma_{\rm had}^0 \ (\times 10^3) \ ({\rm nb})$	41541	±	37	0.1	4	Peak hadronic cross section Luminosity measurement
$N_{\nu}(\times 10^3)$	2996	±	7	0.005	1	Z peak cross sections Luminosity measurement
$R_b (\times 10^6)$	216290	±	660	0.3	< 60	Ratio of bb to hadrons Stat. extrapol. from SLD
$A_{FB}^{b}, 0~(\times 10^4)$	992	±	16	0.02	1-3	b-quark asymmetry at Z pole From jet charge
$\mathbf{A_{FB}^{pol,\tau}}\left(\times10^{4}\right)$	1498	±	49	0.15	$<\!\!2$	au polarization asymmetry au decay physics
au lifetime (fs)	290.3	±	0.5	0.001	0.04	Radial alignment
$ au ext{ mass (MeV)}$	1776.86	±	0.12	0.004	0.04	Momentum scale
τ leptonic $(\mu\nu_{\mu}\nu_{\tau})$ B.R. (%)	17.38	±	0.04	0.0001	0.003	e/μ /hadron separation
$m_{W} (MeV)$	80350	±	15	0.25	0.3	From WW threshold scan Beam energy calibration
$\Gamma_{\mathbf{W}} \ (\mathrm{MeV})$	2085	±	42	1.2	0.3	From WW threshold scan Beam energy calibration

FCC feasibility Mid-term report -Deliverable #8, <u>physics and Experiments</u>

Comprehensive measurements of the Z lineshape and many Electroweak Precision Observables

50x improved precision

W mass, width and more

Future

precision reach on effective couplings from SMEFT global fit

With 20 ab⁻¹ at √s=100 TeV expect:	Conclusive elu
~ 10^{13} W ~ 10^{12} Z ~ 10^{11} tt ~ 10^{10} H ~ 10^{9} ttH ~ 10^{7} HH ~ 10^{5} gluino pairs m=8 TeV	Without H: V _L V H regularize Else: new pl heavy reso FCC-hh: direct

Conclusive elucidation of EWSB by probing SM in regime where EW symmetry is restored ($\sqrt{s} >> v=246 \text{ GeV}$)

- Without H: V_LV_L scattering violates unitarity at $m_{vv} \sim \text{TeV}$ \Box H regularizes the theory fully \rightarrow a crucial "closure test" of the SM
- Else: new physics: anomalous quartic couplings (VVVV, VVhh) and/or new heavy resonances

FCC-hh: direct discovery potential of new resonances in the O(10 TeV) range

Fabiola Gianotti at <u>"The 50th Anniversary of Hadron Colliders at CERN"</u>

Summary and Prospects

- Rich progress and potential from the electroweak physics
 - Precise measurements, rare process discovery
 - NNNLO/polarization/interference/global...
 - \circ Tools to explore unknown: QE, $0\nu\mu\mu...$
- High energy, High Luminosity, High multiplicity
 - High opportunities although with challenges!

Quantity	Current precision	FCC-ee stat. (syst.) precision	Required theory input	Available calc. in 2019	Needed theory $\operatorname{improvement}^{\dagger}$
$m_{\rm Z} \\ \Gamma_{\rm Z} \\ \sin^2 \theta_{\rm eff}^{\ell}$	$2.1 \mathrm{MeV}$ $2.3 \mathrm{MeV}$ $1.6 imes 10^{-4}$	$\begin{array}{l} 0.004~(0.1){\rm MeV}\\ 0.004~(0.025){\rm MeV}\\ 2(2.4)\times10^{-6} \end{array}$	non-resonant $e^+e^- \rightarrow f\bar{f},$ initial-state radiation (ISR)	NLO, ISR logarithms up to 6th order	NNLO for $e^+e^- \rightarrow f\bar{f}$
m_W	$12{ m MeV}$	0.25 (0.3) MeV sub-MeV precision	lineshape of $e^+e^- \rightarrow WW$ near threshold	NLO (ee \rightarrow 4f or EFT framework)	NNLO for ee \rightarrow WW, W \rightarrow ff in EFT setup
HZZ coupling		0.2%	cross-sect. for $e^+e^- \rightarrow ZH$	NLO + NNLO QCD	NNLO electroweak

FCC feasibility Mid-term report - Deliverable #8, physics and Experiment