Recent top quark and QCD results from ATLAS and CMS

Harish Potti on behalf of the ATLAS and CMS collaborations

The University of Sydney

8th July 2024

29th International Symposium on Particles, String and Cosmology Quy Nhon, Vietnam

Harish Potti

THE LARGE HADRON COLLIDER

- ► The Large Hadron Collider (LHC) is a circular particle accelerator
- ► High-energy proton beams are made to collide at *E*_{CM} up to 13.6 TeV

► H" (hydrogen anions) ► p (protons) ► ions ► RiBs (Radioactive Ion Beams) ► n (neutrons) ► p (ant(protons) ► e (electrons)

URC - Large Hadron Collder # 955 - Super Proton Synchrotron /P 55 - Proton Synchrotron /r AD - Antippoton Derelerator # CLEAR - CLEN Linear Bectron Accelerator for Research // WMAI - Advanced WARcHeld Experiment // ROUTE - Isotope Separator OnLine // REXHEI - Radioactive Dependent/High Intensity and Energy SOUDE # LIRE - Low Energy to Ring # LINEA - LINear Accelerator # n_TOF - Neutrons Time Of Fight # High-Linear - Research // Research - Resea

- 27 km in circumference and located 100 m beneath the surface
- Two general purpose detectors: ATLAS and CMS
- Two specialized detectors: LHCb and ALICE
- Superconducting coils are used to provide a magnetic field of up to 8.3 T

Harish Potti

Recent top quark and QCD results from ATLAS and CMS

8th July 2024 2 / 33

LHC STATUS

- ► During LHC Run-2 data taking period (2015-18), the ATLAS experiment recorded ~ 140 fb⁻¹ of *pp* collision data at \sqrt{s} = 13 TeV
- Run-3 started in 2022 with *pp* collisions at $\sqrt{s} = 13.6$ TeV
- ► LHC already delivered 103 fb⁻¹ of data
- This new dataset presents an exciting opportunity to improve the precision of top quark measurements and push the boundaries of the search for BSM physics
- Analyses with Run-3 data are slowing ramping up as many of them are still working with full Run-2 dataset

Harish Potti

TOP QUARK: INTRODUCTION

- Heaviest quark, yet fundamental
- ► First observed in 1995 by CDF and D0 experiments
- Yukawa coupling $(y_t) \sim 1 \implies$ may play a special role in the EWSB mechanism
- Very short lifetime $\sim 10^{-25}s \implies$ Top quark does not form hadrons
- Decays almost always to $Wb \implies$ Good probe for $|V_{tb}|$
- Precision measurements of top quark properties provides an important test for the SM
- Any observation of deviations would indicate physics beyond the SM

OUTLINE

In this talk, I will highlight a few selected top quark and QCD results from the ATLAS and CMS collaborations.

Top mass & Lepton Flavour Universality

Quantum Entanglement in top quarks

Top + X

Top cross section

Jet cross section measurements

Harish Potti R

MEASUREMENT OF THE TOP QUARK MASS

- ► Top quark mass (*m_t*) is a free parameter in the SM ⇒ Must be measured experimentally
- *m_t* plays a central role in understanding the stability of the Electroweak vacuum

Combination of the ATLAS and CMS measurements at 7 & 8 TeV

- 15 measurements: 6 from ATLAS, 9 from CMS
- $m_t = 172.52 \pm 0.14 \text{ (stat.)} \pm 0.30 \text{ (syst.)} \text{ GeV} (< 2 \text{ permille precision!!})$
- Most precise value of the top quark mass to date
- ▶ More details: Phys. Rev. Lett. 132, 261902 (2024)

Harish Potti

LEPTON FLAVOUR UNIVERSALITY IN W BOSON DECAYS TO ELECTRONS AND MUONS

- Lepton flavour universality is a key axiom of the SM
- It means the coupling of the charged leptons (e, μ, τ) to the electroweak gauge bosons are independent of the lepton flavor
- ► This assumption can be tested by measuring, for example, $R_W^{\mu/e} = \mathcal{B}(W \to \mu\nu)/\mathcal{B}(W \to e\nu)$

New ATLAS measurement with full Run-2 data

- ► Full results: arxiv: 2403.02133
- Probes dileptonic $t\bar{t}$ production process
 - ► large cross-section at the LHC
 - provides a clean source of W bosons
 - small backgrounds (Dominant background is Z+jets)

LFU IN W BOSON DECAYS: RESULTS

Systematic uncertainties due to lepton identification & trigger efficiencies are minimized by simultaneously measuring $R_W^{\mu/e}$ and $R_Z^{\mu\mu/ee}$ with POI:

$$R_{WZ}^{\mu/e} = \frac{R_W^{\mu/e}}{\sqrt{R_Z^{\mu\mu/ee}}}$$

• $R_W^{\mu/e}$ is determined by utilizing the high-precision measurement of $R_Z^{\mu/ee}$ by the LEP and SLD collaborations

$$R_W^{\mu/e}$$
 (ATLAS) = $R_{WZ}^{\mu/e}$ (ATLAS) × $\sqrt{R_Z^{\mu\mu/ee}}$ (LEP+SLD)

►
$$R_W^{\mu/e}$$
 = 0.9995 ± 0.0022 (stat) ± 0.0036 (syst) ± 0.0014 (ext)

- Compatible with the Standard Model assumption at the 0.5% level
- Most precise result to date (better than the PDG average of all previous measurements)

Harish Potti

Top mass & Lepton Flavour Universality

Quantum Entanglement in top quarks

Top + X

Top cross section

Jet cross section measurements

Harish Potti Recent top quark and QCD results from ATLAS and CMS

QUANTUM ENTANGLEMENT IN $t\bar{t}$ pairs

At the $m_{t\bar{t}}$ threshold, 80% of $t\bar{t}$ pairs produced in spin-singlet state - maximally entangled

 $t\bar{t}$ events provide a unique probe for entanglement via spin

- ► Top quark lifetime (~ 10⁻²⁵s) is shorter than its hadronization (~ 10⁻²⁴s) and spin decorrelation time (~ 10⁻²¹s)
- As a result, spin information is preserved in $t \rightarrow Wb$ decays
- For $W \rightarrow \ell \nu$ decays, ℓ measurements allow access to the top quark spin

Entanglement marker $D = -3 \langle \cos \varphi \rangle$

where, φ = angle between the leptons in their parent top quark frames

Measurement of D < -1/3 implies entanglement

Harish Potti

Observation of Quantum Entanglement in $t\bar{t}$ pairs [ATLAS]

ATLAS (arxiv:2311.07288) strategy

- ► Targets *eµ* channel with ≥ 1 b-jet with full Run-2 dataset
- ► Signal region at production threshold is defined as 340 < m_{tt̄} < 380 GeV</p>
- Two validation regions with higher $m_{t\bar{t}}$
- Neutrinos reconstructed based on kinematic constraints on top and W mass

D distorted by detector response

- Calibration curve approach derive true D vs detector-level D dependence
- Event-by-event reweighting $\Rightarrow \cos \varphi$ distributions for various *D*

Harish Potti

⁸th July 2024 11 / 33

OBSERVATION OF QUANTUM ENTANGLEMENT IN $t\bar{t}$ PAIRS [ATLAS] arxiv:2311.07288

- Calculated detector-level D from data and corrected using the calibration curve
- Good agreement between measured and predicted *D* in validation regions
- $D_{obs} = -0.547 \pm 0.002$ (stat.) ± 0.021 (syst.)
- $D_{exp} = -0.470 \pm 0.002 \text{ (stat.)} \pm 0.018 \text{ (syst.)}$
- Observed and expected significances with respect to the entanglement limit are > 5 σ
- Measurement is dominated by systematic uncertainties (leading one: signal modelling)

https://atlas.cern/Updates/Briefing/Top-Entanglement https://cerncourier.com/a/highest-energy-observationof-entanglement/

Particle-level Invariant Mass Range [GeV]

Harish Potti

Observation of Quantum Entanglement in $t\bar{t}$ pairs [CMS]

CMS measurement (arxiv:2406.03976):

- ► Targets events with two leptons of opposite charge with ≥ 1 b-jet
- ▶ Uses 2016 data with 36.3 fb ⁻¹
- ► Signal region at production threshold: 345 < m_{tt̄} < 400 GeV</p>
- Cut on velocity along the beam line of the *t̄t* system to increase fraction of gg/qq̄
- Perform a profile maximum likelihood fit of the cos φ distribution in the signal region
- Effects due to non-relativistic quasi bound-states were considered in this analysis

Harish Potti

OBSERVATION OF QUANTUM ENTANGLEMENT IN $t\bar{t}$ PAIRS [CMS] arxiv:2406.03976

Results without considering effects due to η_t :

 $D_{obs} = -0.480^{+0.026}_{-0.029}$ $D_{exp} = -0.467^{+0.026}_{-0.029}$ Significance: 6.3 σ obs. (4.7 σ exp.) \Rightarrow Observation of top quarks entanglement at $t\bar{t}$ threshold

Thus, the ATLAS and CMS measurements provide a new probe of Quantum Mechanics at the highest energies ever produced

Latest CMS result

Spin correlations and entanglement in top quark pairs using lepton+jets events: CMS-PAS-TOP-23-007

Harish Potti

Top mass & Lepton Flavour Universality

Quantum Entanglement in top quarks

Top + X

Top cross section

Jet cross section measurements

Harish Potti Recent top quark and QCD results from ATLAS and CMS

TOP QUARK IN ASSOCIATION WITH A Z BOSON CMS-PAS-TOP-23-004

- Simultaneous measurement of $t\bar{t}Z + tWZ$ and $tZq \implies$ High sensitivity to possible anomalous coupling between the top quark and *Z* boson
- Considers 3 lepton final state (2 from Z; 1 from W)
- Multi-class DNN is used for separation of signal and backgrounds

Harish Potti

INCLUSIVE CROSS SECTION MEASUREMENT

CMS-PAS-TOP-23-004

- Includes 4ℓ ($t\bar{t}Z$ enriched) and 0 b-jets (WZ enriched) channels
- $\sigma(t\bar{t}Z + tWZ) = 1.14 \pm 0.05 \text{ (stat)} \pm 0.04 \text{ (syst) pb}$
- $\sigma(tZq) = 0.81 \pm 0.07 \text{ (stat)} \pm 0.06 \text{ (syst) pb}$
- Dominated by statistical uncertainties
- $\mu_{t\bar{t}Z+tWZ} = 1.17 \pm 0.07$ (slightly higher than the SM prediction)
- $\mu_{tZq} = 0.99 \pm 0.13$ (agrees with the SM prediction)

Harish Potti

DIFFERENTIAL CROSS-SECTION MEASUREMENTS

CMS-PAS-TOP-23-004

- Measured as a function of five observables: $p_T(Z)$, $p_T(\ell_W)$, $\Delta\phi(\ell^+, \ell^-)$, $\Delta R(Z, \ell_W)$ and $cos\theta_Z^*$
- These observables are sensitive to QCD modelling, BSM physics and useful for EFT interpretations

- ► Significant discrepancy in the region of low p_T(ℓ_W)
- Reason for the slightly higher measured cross-section

Measurement of tW production in $e\mu$ channel with the CMS experiment CMS-pas-top-23-008

tW production is very interesting due to:

- its interference with $t\bar{t}$ at NLO in QCD
- sensitivity to new physics
- its role as a background in many SM and new physics searches

First Run-3 single top measurement

- ► Inclusive and differential X-section measurements were performed in *eµ* final state
- ► Uses 2022 run-3 data (34.7 fb⁻¹)

TREATMENT OF tW and $t\overline{t}$ interference

CMS-PAS-TOP-23-008

Four schemes are used for modelling *tW* production:

- Diagram Removal (DR): Remove doubly resonant diagrams from signal definition
- ► **DR2**: Includes the terms corresponding to the interference between *tW* and *tt*
- Diagram Subtraction (DS): Subtract gauge-invariant term to cancel the interference
- Alternate DS: a dynamic factor is used to model the top quark resonance, instead of a fixed one

DR is used as the default in the analysis

Harish Potti

EVENT SELECTION CMS-PAS-TOP-23-008

Baseline event Selection:

- Single lepton and dilepton triggers
- ► ≥2 leptons with p_T > 20 GeV and |η| < 2.4</p>
- Leading lepton pair must be opposite sign eµ pair
- ▶ Leading lepton p_T > 25 GeV
- ► M(ℓ_i, ℓ_j) > 20 GeV for all lepton pair combinations

Categorization based on:

- ▶ Jets: p_T > 30 GeV and |η| < 2.4</p>
- Loose jets: 20 GeV $< p_T < 30$ GeV

Inclusive measurement:

- ▶ 1j1b + 2j1b: sensitive to tW
- 2j2b: Control region for tī

Differential measurement:

1j1b region events with zero loose jets

Random Forest (RF) multiclassifiers are trained to separate tW signal from $t\bar{t}$ background.

Harish Potti

⁸th July 2024 21 / 33

INCLUSIVE *tW* MEASUREMENT CMS-PAS-TOP-23-008

 $\sigma_{\text{meas.}} = 84.1 \pm 2.1 \text{ (stat.)} ^{+9.8}_{-10.2} \text{(syst.)} \pm 3.3 \text{(lumi.) pb}$

► In agreement with prediction $\sigma_{tW}^{SM} = 87.9^{+2.0}_{-1.9}$ (scale) ± 2.4 (PDF+ α_s) pb (aN³LO QCD)

- Measurement is clearly dominated by systematic uncertainties
- Leading syst. unc. sources: JES, Non-W/Z normalization and b-tagging efficiencies

DIFFERENTIAL *tW* MEASUREMENT CMS-PAS-TOP-23-008

- Overall, the measurements are in good agreement with predictions
- All methods, DR, DR2, DS, and DS with a dynamic factor, show similar compatibility with data
- ▶ Overall uncertainties in range of 30-40% (limited stats.)

Top mass & Lepton Flavour Universality

Quantum Entanglement in top quarks

Top + X

Top cross section

Jet cross section measurements

Harish Potti Recent top quark and QCD results from ATLAS and CMS

$t\bar{t}$ production in *p*+Pb collisions

Measurement of top quarks in *p*+Pb collisions provide

- Novel probes of nuclear modifications to parton distribution functions (nPDFs) in a poorly constrained kinematic region Phys. Rev. D 93, 014026 (2016)
- Insights to better understand the properties of the strongly interacting quark-gluon plasma produced in Pb+Pb collisions

New ATLAS result

Observation of $t\bar{t}$ production in the combined ℓ +jets and dilepton (first time in HI collisions) channels in *p*+Pb collisions arxiv: 2405.05078

- ► W boson, Z boson, b-jet, and τ-lepton have already been observed in Pb+Pb collisions
- ► CMS previously reported the observation of *tt* production using the *ℓ*+**jets** channel Phys. Rev. D 93, 014026 (2017)
- ► Uses 165 nb⁻¹ *p*+Pb collision data collected by the ATLAS experiment in 2016 ($\langle \mu \rangle = 0.18$)

$t\bar{t}$ PRODUCTION IN *p*+Pb COLLISIONS: STRATEGY arxiv: 2405.05078

- Six signal regions are defined based on the # b-jets and # leptons
 - ▶ $1\ell 1b \ e + jets$
 - ► 1ℓ2bincl e+jets
 - $1\ell 1b \ \mu + jets$
 - ► 1ℓ2bincl µ+jets
 - ► 2ℓ1b
 - ► 2ℓ2bincl
- Fake lepton backgrounds are estimated using a data-driven method (Matrix Method)

Harish Potti

$t\bar{t}$ PRODUCTION IN *p*+Pb COLLISIONS: RESULTS arxiv: 2405.05078

- Background only hypothesis is rejected with more than 5σ in *ℓ*+jets and dilepton channels separately
- Measured cross-section: $\sigma_{t\bar{t}} = 58.1 \pm 2.0 \text{ (stat.)} ^{+4.8}_{-4.4} \text{ (syst.) nb}$
- The total systematic uncertainty amounts to 9%, which makes it the most precise tī measurement in HI collisions
- Leading systematic uncertainties come from fake lepton estimation, signal modelling and jet energy scale
- This result is in agreement with the CMS result within 1.4 standard deviations
- A good agreement is found with NNLO calculation based on several nPDF sets

Inclusive $t\bar{t}$ cross-section at $\sqrt{s} = 5.02$ TeV

- New CMS result: CMS-PAS-TOP-23-005
- ► Uses 302 pb⁻¹ low-intensity *pp* collision data collected in 2017 (⟨µ⟩ =2)
- ► *ℓ*+jets final state
- QCD background is estimated using a data driven method
- Combined with the previously published dilepton result
- Limited by luminosity and b-tagging uncertainties

Harish Potti

Top mass & Lepton Flavour Universality

Quantum Entanglement in top quarks

Top + X

Top cross section

Jet cross section measurements

Harish Potti Recent top quark and QCD results from ATLAS and CMS

JET CROSS SECTION MEAUREMENTS

Jet cross section measurements are

- Important inputs to parton distribution function (PDF) fits
 - ▶ Particularly important for aspects like the high-*x* gluon PDF
 - ► Not calculable from first principles ⇒ need measurements
- Tests of perturbative QCD predictions
- Sensitive to the strong coupling constant and its running

New ATLAS measurements of jet cross sections

- ► ATLAS-STDM-2020-04
- ► Uses full run-2 data (140 fb⁻¹)
- Includes improvements to the treatment of the jet energy scale uncertainties => significant improvement in the precision of the results

ATLAS JET CROSS SECTION MEAUREMENTS

ATLAS-STDM-2020-04

- Good description by Pythia of *R*₃₂ vs *H*_{T2} at low and high *p*_{T3} scales
 - Rest of MC models fail to describe R₃₂ at large p_{T3}
- Prediction from HEJ models the data well in the studied *m_{jj}* range

Harish Potti

Recent top quark and QCD results from ATLAS and CMS

CONCLUSIONS

- The ATLAS and CMS experiments measured top quark mass and properties to a very high precision with LHC data
- The LHC offers a great environment to study things like LFU and Quantum Entanglement. Many more exciting measurements can be found here:
 - ATLAS: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
 - CMS: https://twiki.cern.ch/twiki/bin/view/CMSPublic/
- The ongoing Run-3 presents exciting improvements. So, stay tuned for future results!!

Thank You

Harish Potti